Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered catalyst could lead to the low-cost production of clean methanol

03.03.2014

An international research team has discovered a potentially clean, low-cost way to convert carbon dioxide into methanol, a key ingredient in the production of plastics, adhesives and solvents, and a promising fuel for transportation.

Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark combined theory and experimentation to identify a new nickel-gallium catalyst that converts hydrogen and carbon dioxide into methanol with fewer side-products than the conventional catalyst. The results are published in the March 2 online edition of the journal Nature Chemistry.


Scientists have created a new nickel-gallium (Ni5Ga3) catalyst that synthesizes methanol (MeOH), a key ingredient in paints and plastics, using carbon dioxide (CO2) and hydrogen (H2). The goal is to create clean methane using hydrogen produced by wind or solar power and CO2 emissions from power plants.

Credit: Jens Hummelshoj/SLAC

"Methanol is processed in huge factories at very high pressures using hydrogen, carbon dioxide and carbon monoxide from natural gas," said study lead author Felix Studt, a staff scientist at SLAC. "We are looking for materials than can make methanol from clean sources under low-pressure conditions, while generating low amounts of carbon monoxide."

The ultimate goal is to develop a large-scale manufacturing process that is nonpolluting and carbon neutral using clean hydrogen, the authors said.

"Imagine if you could synthesize methanol using hydrogen from renewable sources, such as water split by sunlight, and carbon dioxide captured from power plants and other industrial smokestacks," said co-author Jens Nørskov, a professor of chemical engineering at Stanford. "Eventually we would also like to make higher alcohols, such as ethanol and propanol, which, unlike methanol, can be directly added to gasoline today."

Industrial methanol

Worldwide, about 65 million metric tons of methanol are produced each year for use in the manufacture of paints, polymers, glues and other products. In a typical methanol plant, natural gas and water are converted to synthesis gas ("syngas"), which consists of carbon monoxide, carbon dioxide and hydrogen. The syngas is then converted into methanol in a high-pressure process using a catalyst made of copper, zinc and aluminum.

"We spent a lot of time studying methanol synthesis and the industrial process," Studt said. "It took us about three years to figure out how the process works and to identify the active sites on the copper-zinc-aluminum catalyst that synthesize methanol."

Once he and his colleagues understood methanol synthesis at the molecular level, they began the hunt for a new catalyst capable of synthesizing methanol at low pressures using only hydrogen and carbon dioxide. Instead of testing a variety of compounds in the lab, Studt searched for promising catalysts in a massive computerized database that he and co-author Frank Abild-Pedersen developed at SLAC.

"The technique is known as computational materials design," explained Nørskov, the director of the SUNCAT Center for Interface Science and Catalysis at Stanford and SLAC. "You get ideas for new functional materials based entirely on computer calculations. There is no trial-and-error in the lab first. You use your insight and enormous computer power to identify new and interesting materials, which can then be tested experimentally."

Studt compared the copper-zinc-aluminum catalyst with thousands of other materials in the database. The most promising candidate turned out to be a little-known compound called nickel-gallium.

"Once we got the name of the compound out of the computer, someone still had to test it," Nørskov said. "We don't do lab experiments here, so we have to have a good experimental partner."

Nørskov turned to a research group at the Technical University of Denmark led by co-author Ib Chorkendorff. First, the Danish team carried out the task of synthesizing nickel and gallium into a solid catalyst. Then the scientists conducted a series of experiments to see if the new catalyst could actually produce methanol at ordinary room pressure.

The lab tests confirmed that the computer had made the right choice. At high temperatures, nickel-gallium produced more methanol than the conventional copper-zinc-aluminum catalyst, and considerably less of the carbon monoxide byproduct.

"You want to make methanol, not carbon monoxide," Chorkendorff said. "You also want a catalyst that's stable and doesn't decompose. The lab tests showed that nickel-gallium is, in fact, a very stable solid."

While these results show promise, a great deal of work lies ahead. "We'd like to make the catalyst a little more clean," Chorkendorff added. "If it contains just a few nanoparticles of pure nickel, the output drops quite a bit, because pure nickel is lousy at synthesizing methanol. In fact, it makes all sorts of chemical byproducts that you don't want."

Nickel is relatively abundant, and gallium, although more expensive, is widely used in the electronics industry. This suggests that the new catalyst could eventually be scaled up for industrial use, according to the authors. But to make methanol synthesis a truly carbon-neutral process will require overcoming many additional hurdles, they noted.

###

Other co-authors of the study are Jens Hummelshøj of SLAC; and Irek Sharafutdinov, Christian Elkjaer and Søren Dahl of the Technical University of Denmark.

The research was supported by the U.S. Department of Energy, The Danish National Research Foundation and the Danish Ministry of Science, Technology and Innovation.

This article was written by Mark Shwartz, Precourt Institute for Energy at Stanford University.

Related information:

SUNCAT Center for Interface Science and Catalysis http://suncat.slac.stanford.edu/

Center for Individual Nanoparticle Functionality http://www.cinf.dtu.dk/

Mark Shwartz | EurekAlert!

Further reports about: Catalysis SLAC carbon dioxide carbon monoxide dioxide discovered monoxide

More articles from Life Sciences:

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>