Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered breast milk antibodies help neutralize HIV

23.05.2012
Antibodies that help to stop the HIV virus have been found in breast milk. Researchers at Duke University Medical Center isolated the antibodies from immune cells called B cells in the breast milk of infected mothers in Malawi, and showed that the B cells in breast milk can generate neutralizing antibodies that may inhibit the virus that causes AIDS.

HIV-1 can be transmitted from mother to child via breastfeeding, posing a challenge for safe infant feeding practices in areas of high HIV-1 prevalence. But only one in 10 HIV-infected nursing mothers is known to pass the virus to their infants.

"That is remarkable, because nursing children are exposed multiple times each day during their first year of life," said senior author Sallie Permar, M.D., Ph.D., an assistant professor of pediatrics and infectious diseases at Duke. "We are asking if there is an immune response that protects 90 percent of infants, and could we harness that response to develop immune system prophylaxis (protection) during breastfeeding for mothers infected with HIV-1.

"Our work helped establish that these B cells in breast milk can produce HIV-neutralizing antibodies, so enhancing the response or getting more mucosal B-cells to produce those helpful antibodies would be useful, and this is a possible route to explore for HIV-1 vaccine development," Permar said.

The study was published on May 18 in PLoS One, an open-access journal published by the Public Library of Science.

"This is important work that seeks to understand what a vaccine must do to protect babies from mucosal transmission during breastfeeding," said Barton Haynes, M.D., co-author and a national leader in AIDS/HIV research, director of the Center for HIV/AIDS Vaccine Immunology (CHAVI), as well as director of the Duke Human Vaccine Institute (DHVI). "The antibodies isolated are the first HIV antibodies isolated from breast milk that react with the HIV-1 envelope, and it important to understand how they work to attack HIV-1."

The findings of two different antibodies with HIV-neutralizing properties isolated from breast milk also may help researchers with new investigations into adult-to-adult transmission, in addition to mother-to-child transmission.

Permar said that most HIV-1 transmission occurs at a mucosal site in the body – surfaces lined with epithelial cells, such as the gastrointestinal tract or vaginal tissue. The mucosal compartments all have their own immune system cells.

"We're excited about this finding because the immune cells in mucosal compartments can cross-talk and traffic between compartments," Permar said. "So the antibodies we found in breast milk indicate that these same antibodies are able to be elicited in other tissues."

Interestingly, the Centers for Disease Control in the U.S. recommend against breastfeeding if a mother has HIV-1, because baby formula is a safe alternative for U.S.-born infants. The World Health Organization, however, encourages HIV-infected nursing mothers in resource-poor regions to breastfeed while the mother and/or infant take antiretroviral drugs to prevent the infection in the infant, because without the nutrients and immune factors in mothers' milk, many more infants would die from severe diarrhea and respiratory and other diseases.

At the DHVI and CHAVI, there are many projects aimed at designing neutralizing responses in vaccinated individuals, and for improved vaccines that display specific targets to the immune system before it gets infected, with the idea of eliciting protective responses that fight against HIV transmission. "Our work will be important in eliminating mother-to-child transmission and getting the types of responses needed for protecting all infants," Permar said.

The study itself wasn't easy to perform, she noted. The samples came from a group of women in Malawi who were recruited by CHAVI for this study.

"Successfully characterizing antibodies from such a fragile medium required global coordination and expertise across multiple fields and is a hopeful testament to the incredible amounts of work and leadership currently under way to fight this devastating disease," said first author James Friedman, a third-year medical student at Duke University School of Medicine. "To be a part of, and to contribute to such a large-scale and important effort is incredibly exciting."

Because of limited availability of the laboratory instrument needed to isolate single, viable immune cells in the region, the samples were not analyzed there. Instead, samples were frozen and transported for analysis. Keeping the breast milk under the right conditions for later thawing and testing of B cells and for isolating antibodies was a challenge, Permar said.

Other co-authors from the Duke Human Vaccine Institute were co-senior author Anthony Moody, S. Munir Alam, Xiaoying Shen, Shi-Mao Xia, Shelley Stewart, Kara Anasti, Justin Pollara, Genevieve G. Fouda, Guang Yang, Garnett Kelsoe, Guido Ferrari, Georgia D. Tomaras, and Hua-Xin Liao.

The study was funded by the National Institutes of Health (NIH/NIAID/DAIDS) grants: the Center for HIV/AIDS Vaccine Immunology (CHAVI) AI067854, AI07392, and AI087992; and the Doris Duke Foundation Clinical Scientist Development Award. The Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (CAVDVIMC grant 38619) provided additional funding for this work.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>