Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights in survival strategies of bacteria

15.09.2014

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial community that is surrounded by a protective slime capsule consisting of sugar chains and "curli".

Scientists at VIB and Vrije Universiteit Brussel have for the first time created a detailed three-dimensional image of the pores through which the curli building blocks cross the bacterial cell wall, a crucial step in the formation of the protective slime capsule. In addition to the fundamental insights provided by this work, the new results could in the long-term also result in many useful applications.

Han Remaut (VIB/VUB): "By determining the three-dimensional structure, it is now possible to develop small molecules that fit like a stopper in the pore of the transporter. This inhibits the excretion of the curli building blocks and can prevent the formation of curli fibers and unwanted biofilms during infections or in industrial installations."

Bacteria have other ingenious protection systems

Bacteria protect themselves against external stress factors by organizing as a biofilm. This allows pathogenic bacteria to defend themselves against treatment with antibiotics, or allows them to hide from the immune system. Bacteria also create biofilms in industrial installations, which can hamper the processes in the installation and result in blockages. Biofilms are bacterial communities that surround themselves with a protective slime capsule consisting of sugar chains and protein fibers or "curli". In order to produce this protective slime capsule, bacteria use a modified transport system to deliver curli building blocks safely to the outside of the bacteria, so that the curli fibers can be produced there.

Transport system is crucial link in defense process

Parveen Goyal and Han Remaut (VIB/VUB) reported in Nature this week on a breakthrough in the unravelling of this curli transport system. Using X-ray crystallography, they succeeded for the first time in making a detailed three-dimensional image of the pore along which the curli building blocks are transported through the bacterial cell wall. Transporting these building blocks to the outside is a remarkable feat for the bacteria. It requires energy and as curli-forming bacteria have a double cell wall, they do not have access to the usual cellular motors that drive these transport channels. Parveen Goyal (VIB/VUB): "Based on the structure of the secretion channel, we are able for the first time to build a model of how bacteria can cross this barrier."

Using biofilms for new applications?

Biofilms of non-pathogenic bacteria can also exhibit desirable properties that we can use for new applications. Han Remaut (VIB/VUB): "As they are able to polymerize by themselves and are extremely stable, curli fibers have great potential as building blocks for functional nano wires." Curli fibers could be used as carriers for other proteins, thereby forming so-called functional biofilms. For example, by coating the curli fibers with proteins and enzymes that absorb, convert or break down specific substances, they can be used for waste water treatment or the conversion of biofuels. This requires further research, but the research group reported the first steps in this direction earlier this year.

###

Publication

Research was published in the leading journal Nature.
Nature, September, 2014

Sooike Stoops | Eurek Alert!

Further reports about: Biofilms Biotechnology VIB VUB bacteria bacterial capsule fibers protective proteins slime strategies structure three-dimensional

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>