Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fat cell metabolism research could lead to new ways to treat diabetes and obesity

17.11.2015

Researchers at the University of California, San Diego report new insights into what nutrients fat cells metabolize to make fatty acids. The findings pave the way for understanding potential irregularities in fat cell metabolism that occur in patients with diabetes and obesity and could lead to new treatments for these conditions. The researchers published their findings online in the Nov. 16 issue of Nature Chemical Biology.

"This study highlights how specific tissues in our bodies use particular nutrients. By understanding fat cell metabolism at the molecular level, we are laying the groundwork for further research to identify better drug targets for treating diabetes and obesity," said Christian Metallo, a bioengineering professor in the Jacobs School of Engineering at UC San Diego and senior author of the study. Metallo is affiliated with the Institute for Engineering in Medicine, the Moore's Cancer Center, and the CHO Systems Biology Center, all at UC San Diego.


Microscopy image depicting fat cells (or adipocytes) after differentiation. The cells are stained with Oil Red O, which highlights lipid or fat droplets that accumulate with the fat cells. The metabolic studies described here indicated that fat cells produce these fatty acids, in part, from essential amino acids rather than sugar only.

Credit: Metabolic Systems Biology lab, UC San Diego Jacobs School of Engineering

In the new study, researchers discovered that as fat cells develop, they change what types of nutrients they metabolize to produce fat and energy. Pre-adipocytes, which are precursors to fat cells, preferentially consume glucose, a simple sugar, to grow and make energy. But when pre-adipocytes become fat cells, researchers found that they metabolize not just glucose, but also branched-chain amino acids, a small set of the essential amino acids for humans.

This finding is important because it shows that fat cells play an important role in regulating the body's levels of branched-chain amino acids -- which are typically elevated in individuals with diabetes and obesity.

"We've taken a step towards understanding why these amino acids are accumulating in the blood of diabetics and those suffering from obesity," said Courtney Green, a bioengineering Ph.D. student at UC San Diego and first author of the study. "The next step is to understand how and why this metabolic pathway becomes impaired in the fat cells of these individuals."

Metallo and his team studied the metabolism of fat cells from the pre-adipocyte stage throughout the fat cell differentiation process. They induced pre-adipocytes to differentiate into fat cells and cultured the cells in media containing nutrients enriched with carbon-13 isotopes, a form of carbon atoms that are used as metabolic tracers in cells, animals, and people. Through this method, researchers were able to trace what carbon-based nutrients the cells metabolized and what they produced at different stages of the cell differentiation process.

"We are curious about how different cells in our body, such as fat cells, consume and metabolize their surrounding nutrients. A better understanding of how these biochemical pathways are used by cells could help us find new approaches to treat diseases such as cancer or diabetes," said Metallo.

###

This work was supported by the National Institutes of Health, the California Institute of Regenerative Medicine, the US Department of Defense, a Searle Scholar Award, and grants from the American Diabetes Association, the Medical Research Service, the US Department of Veterans Affairs and the VA San Diego Healthcare System, and Seahorse Bioscience.

Full paper: "Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis" by Courtney R. Green, Martina Wallace, Ajit S. Divakaruni, Susan A. Philips, Anne M. Murphy, Theodore P. Ciaraldi, and Christian M. Metallo. The paper was published online in the Nov. 16, 2015 issue of the journal Nature Chemical Biology.

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

Further reports about: Biology Metabolism amino acids fat cells metabolize nutrients

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>