Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Disease Gene for Early Infantile Epilepsy found

25.04.2014

A severe form of epilepsy in infants is caused by hitherto unknown mutations of the HCN1 ion channel. The changes in the genetic material are de novo mutations, i. e. they are not present in the parents. This is reported by a German-French research team in the journal “Nature Genetics”.

Epileptic encephalopathies are severe disorders which occur even in babies. They are accompanied by a disturbed maturation of the brain as well as by an impairment of the mental and sometimes also of the motoric development. Seizures typically appear first in combination with fever and cannot usually be treated.


Structure of the HCN1 channel in the cell membrane of nerve cells. The asterisks mark the spots where mutations were found that cause an early infantile epilepsy resembling the Dravet syndrome.

Picture: Institute for Human Genetics

Another form of early infantile epileptic encephalopathy, which has been known for some time, is the Dravet syndrome. It occurs in about one child out of 30,000 and is caused by mutations of the sodium channel gene SCN1A. However, many children suffering from a disorder resembling the Dravet syndrome have no mutations of SCNA1, so there must be other genes responsible for this early infantile type of epilepsy.

Mutations discovered in the HCN1 ion channel

In the search for new disease genes as the cause of early infantile epileptic encephalopathies, scientists from Paris and Würzburg have now made a discovery. In the genetic material of nearly 200 affected children, where mutations of the SCNA1 gene had already been ruled out, they discovered in six cases the pathogenic mutations in another ion channel gene, namely HCN1. These dominant mutations arise spontaneously during the generation of the parents' reproductive cells; they are not present in the parents' body cells.

“The electric current carried by the HCN1 cation channel is also referred to as 'pacemaker', because it stimulates rhythmic activity in spontaneously active nerve cells”, says Professor Thomas Haaf, head of the Institute for Human Genetics of the University of Würzburg Animal models had already suggested that this channel has a key role in epileptic disorders. “But so far no corresponding mutations had been found in patients.”

Differences from the Dravet syndrome

At the beginning the seizures of children with mutations of the HCN1 gene are hardly distinguishable from the Dravet syndrome, but at later stages they are: “There is an increased occurrence of atypical seizures. All affected children have an impairment of intelligence and behavioural disorders, including autistic behaviour”, says Professor Haaf.

The study was led by Dr. Christel Depienne, who worked for two years until the end of 2013 as a visiting scientist at the Würzburg Institute for Human Genetics. From there she coordinated the German-French research team.

Consequences of the new discovery

How can patients benefit from the new findings? This is not an easy question to answer, because it is usually a long way from the discovery of a pathogenic gene mutation to the therapy.

Professor Haaf comments: “In any case, a better understanding of the molecular causes of the disorder will be helpful in the development of new therapeutic approaches, for example of drugs with a specific effect on the HCN1 currents. The results enable us already to make a correct diagnosis of this very severe early infantile disorder, which usually occurs sporadically, and to provide genetic counselling to parents with regard to their further family planning.”

“De novo mutations in HCN1 cause early infantile epileptic encephalopathy”, C. Nava, C. Dalle, A. Rastetter, …, T. Haaf, E. Leguern, C. Depienne, Nature Genetics, published online on 20 April 2014, doi:10.1038/ng.2952

Contact

Prof. Dr. Thomas Haaf, Institute for Human Genetics of the University of Würzburg, T (0931) 31-88738, thomas.haaf@uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>