Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Disease Gene for Early Infantile Epilepsy found

25.04.2014

A severe form of epilepsy in infants is caused by hitherto unknown mutations of the HCN1 ion channel. The changes in the genetic material are de novo mutations, i. e. they are not present in the parents. This is reported by a German-French research team in the journal “Nature Genetics”.

Epileptic encephalopathies are severe disorders which occur even in babies. They are accompanied by a disturbed maturation of the brain as well as by an impairment of the mental and sometimes also of the motoric development. Seizures typically appear first in combination with fever and cannot usually be treated.


Structure of the HCN1 channel in the cell membrane of nerve cells. The asterisks mark the spots where mutations were found that cause an early infantile epilepsy resembling the Dravet syndrome.

Picture: Institute for Human Genetics

Another form of early infantile epileptic encephalopathy, which has been known for some time, is the Dravet syndrome. It occurs in about one child out of 30,000 and is caused by mutations of the sodium channel gene SCN1A. However, many children suffering from a disorder resembling the Dravet syndrome have no mutations of SCNA1, so there must be other genes responsible for this early infantile type of epilepsy.

Mutations discovered in the HCN1 ion channel

In the search for new disease genes as the cause of early infantile epileptic encephalopathies, scientists from Paris and Würzburg have now made a discovery. In the genetic material of nearly 200 affected children, where mutations of the SCNA1 gene had already been ruled out, they discovered in six cases the pathogenic mutations in another ion channel gene, namely HCN1. These dominant mutations arise spontaneously during the generation of the parents' reproductive cells; they are not present in the parents' body cells.

“The electric current carried by the HCN1 cation channel is also referred to as 'pacemaker', because it stimulates rhythmic activity in spontaneously active nerve cells”, says Professor Thomas Haaf, head of the Institute for Human Genetics of the University of Würzburg Animal models had already suggested that this channel has a key role in epileptic disorders. “But so far no corresponding mutations had been found in patients.”

Differences from the Dravet syndrome

At the beginning the seizures of children with mutations of the HCN1 gene are hardly distinguishable from the Dravet syndrome, but at later stages they are: “There is an increased occurrence of atypical seizures. All affected children have an impairment of intelligence and behavioural disorders, including autistic behaviour”, says Professor Haaf.

The study was led by Dr. Christel Depienne, who worked for two years until the end of 2013 as a visiting scientist at the Würzburg Institute for Human Genetics. From there she coordinated the German-French research team.

Consequences of the new discovery

How can patients benefit from the new findings? This is not an easy question to answer, because it is usually a long way from the discovery of a pathogenic gene mutation to the therapy.

Professor Haaf comments: “In any case, a better understanding of the molecular causes of the disorder will be helpful in the development of new therapeutic approaches, for example of drugs with a specific effect on the HCN1 currents. The results enable us already to make a correct diagnosis of this very severe early infantile disorder, which usually occurs sporadically, and to provide genetic counselling to parents with regard to their further family planning.”

“De novo mutations in HCN1 cause early infantile epileptic encephalopathy”, C. Nava, C. Dalle, A. Rastetter, …, T. Haaf, E. Leguern, C. Depienne, Nature Genetics, published online on 20 April 2014, doi:10.1038/ng.2952

Contact

Prof. Dr. Thomas Haaf, Institute for Human Genetics of the University of Würzburg, T (0931) 31-88738, thomas.haaf@uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>