Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Disease Gene for Early Infantile Epilepsy found

25.04.2014

A severe form of epilepsy in infants is caused by hitherto unknown mutations of the HCN1 ion channel. The changes in the genetic material are de novo mutations, i. e. they are not present in the parents. This is reported by a German-French research team in the journal “Nature Genetics”.

Epileptic encephalopathies are severe disorders which occur even in babies. They are accompanied by a disturbed maturation of the brain as well as by an impairment of the mental and sometimes also of the motoric development. Seizures typically appear first in combination with fever and cannot usually be treated.


Structure of the HCN1 channel in the cell membrane of nerve cells. The asterisks mark the spots where mutations were found that cause an early infantile epilepsy resembling the Dravet syndrome.

Picture: Institute for Human Genetics

Another form of early infantile epileptic encephalopathy, which has been known for some time, is the Dravet syndrome. It occurs in about one child out of 30,000 and is caused by mutations of the sodium channel gene SCN1A. However, many children suffering from a disorder resembling the Dravet syndrome have no mutations of SCNA1, so there must be other genes responsible for this early infantile type of epilepsy.

Mutations discovered in the HCN1 ion channel

In the search for new disease genes as the cause of early infantile epileptic encephalopathies, scientists from Paris and Würzburg have now made a discovery. In the genetic material of nearly 200 affected children, where mutations of the SCNA1 gene had already been ruled out, they discovered in six cases the pathogenic mutations in another ion channel gene, namely HCN1. These dominant mutations arise spontaneously during the generation of the parents' reproductive cells; they are not present in the parents' body cells.

“The electric current carried by the HCN1 cation channel is also referred to as 'pacemaker', because it stimulates rhythmic activity in spontaneously active nerve cells”, says Professor Thomas Haaf, head of the Institute for Human Genetics of the University of Würzburg Animal models had already suggested that this channel has a key role in epileptic disorders. “But so far no corresponding mutations had been found in patients.”

Differences from the Dravet syndrome

At the beginning the seizures of children with mutations of the HCN1 gene are hardly distinguishable from the Dravet syndrome, but at later stages they are: “There is an increased occurrence of atypical seizures. All affected children have an impairment of intelligence and behavioural disorders, including autistic behaviour”, says Professor Haaf.

The study was led by Dr. Christel Depienne, who worked for two years until the end of 2013 as a visiting scientist at the Würzburg Institute for Human Genetics. From there she coordinated the German-French research team.

Consequences of the new discovery

How can patients benefit from the new findings? This is not an easy question to answer, because it is usually a long way from the discovery of a pathogenic gene mutation to the therapy.

Professor Haaf comments: “In any case, a better understanding of the molecular causes of the disorder will be helpful in the development of new therapeutic approaches, for example of drugs with a specific effect on the HCN1 currents. The results enable us already to make a correct diagnosis of this very severe early infantile disorder, which usually occurs sporadically, and to provide genetic counselling to parents with regard to their further family planning.”

“De novo mutations in HCN1 cause early infantile epileptic encephalopathy”, C. Nava, C. Dalle, A. Rastetter, …, T. Haaf, E. Leguern, C. Depienne, Nature Genetics, published online on 20 April 2014, doi:10.1038/ng.2952

Contact

Prof. Dr. Thomas Haaf, Institute for Human Genetics of the University of Würzburg, T (0931) 31-88738, thomas.haaf@uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht How Invasive Plants Influence an Ecosystem
28.07.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>