Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood analysis predicts risk of death

26.02.2014

The general state of a person's metabolism can be diversely illustrated with a new scientific blood analysis. With the aid of the analysis biomarkers predicting short-term mortality have now been discovered.

If a person belongs to a risk group based on these biomarker concentrations, he/she has a multifold risk of dying in the next five years compared to the general population. The study is based on blood samples of over 17,000 Finnish and Estonian people.

Mortality was related to four biomarkers in the blood: levels of two proteins (albumin and alpha-1 acidic glycoprotein), lipid metabolism variables (size of large lipoprotein particles responsible for lipid metabolism in the body) and citric acid concentration. These biomarkers relate to normal metabolism and are present in the blood of all people, but according to the study, their relative amounts are crucial.

The biomarkers were independent of known mortality risk factors such as age, smoking, alcohol use, cholesterol, obesity, and blood pressure. The biomarkers associated with mortality also in healthy subjects with no diagnosed diabetes, cancer or vascular diseases.

The new method gives hope that in the future it would be possible to identify increased risk of death at an early stage, so that people could be directed to appropriate follow-up examinations and treatment.

This study is the first of its kind in the world. More research is needed for possible clinical applications in health care.

The new blood analysis utilised in the research was developed by the Computational Medicine Research Group in cooperation between the University of Oulu and the University of Eastern Finland over nearly ten years. The method is based on Nuclear Magnetic Resonance (NMR) spectroscopy and it enables determination of over 200 biomarkers for body metabolism in one blood sample.

The new blood analysis method has been applied in recent years extensively for the research of metabolic diseases such as type 2 diabetes and cardiovascular diseases. Application of this methodology has also provided new information on the health effects of long-term exercise. Around 50 scientific articles have been published on the applications of this method during the last three years.

The current study was cooperation between the University of Oulu, the University of Eastern Finland, the National Institute for Health and Welfare, Institute for Molecular Medicine Finland (FIMM), and Estonian Genome Centre (in the University of Tartu). One of the leaders of this research is Professor Mika Ala-Korpela from the University of Oulu. Dr. Pasi Soininen, the head of the NMR metabolomics laboratory in the University of Eastern Finland, was responsible for the NMR experimentation. The study was published in the prestigious PLoS Medicine publication series on 25 February 2014.

Additional information:

Dr. Mika Ala-Korpela, Professor of Computational Medicine, University of Oulu, Department of Health Sciences, tel. +358 40 1977 657, email: mika.ala-korpela@computationalmedicine.fi

Dr. Pasi Soininen, Head of the Metabolomics Laboratory (technological inquiries), University of Eastern Finland, Department of Pharmacy, tel. +358 40 355 3246, email: pasi.soininen@uef.fi

Home page of the research group: http://www.computationalmedicine.fi/

Scientific publications on this topic:

Latest research paper on this topic:

PLoS Medicine, 11, e1001606, 2014; doi: 10.1371/journal.pmed.1001606
Published 25.2.2014
Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons
K. Fischer, J. Kettunen, P. Würtz, T. Haller, A. S. Havulinna, A. J. Kangas, P. Soininen, T. Esko, M.-L. Tammesoo, R. Mägi, S. Smit, A. Palotie, S. Ripatti, V. Salomaa, M. Ala-Korpela#, M. Perola#, A. Metspalu# (#directors of the research)

Earlier publications related to this topic:

(1) Metabolic signatures of insulin resistance in 7,098 young adults
P. Würtz, V.-P. Mäkinen, P. Soininen, A. J. Kangas, T. Tukiainen, J. Kettunen, M. J. Savolainen, J. S. Viikari, T. Rönnemaa, M. Kähönen, T. Lehtimäki, S. Ripatti, O. T. Raitakari, M.-R. Järvelin, M. Ala-Korpela
Diabetes 61, 1372-1380, 2012

(2) High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis
P. Würtz, J. Raiko, C. G. Magnussen, P. Soininen, A. J. Kangas, T. Tynkkynen, R. Thomson, R. Laatikainen, M. J. Savolainen, J. Laurikka, P. Kuukasjärvi, M. Tarkka, P. J. Karhunen, A. Jula, J. S. Viikari, M. Kähönen, T. Lehtimäki, M. Juonala, M. Ala-Korpela#, O. T. Raitakari# (#directors of the research)
European Heart Journal 33, 2307-2316, 2012

(3) Long-term leisure-time physical activity and serum metabolome
U. M. Kujala, V.-P. Mäkinen, I. Heinonen, P. Soininen, A. J. Kangas, T. H. Leskinen, P. Rahkila, P. Würtz, V. Kovanen, S. Cheng, S. Sipilä, M. Hirvensalo, R. Telama, T. Tammelin, M. J. Savolainen, A. Pouta, P. F. O'Reilly, P. Mäntyselkä, J. Viikari, M. Kähönen, T. Lehtimäki, P. Elliott, M. J. Vanhala, O. T. Raitakari, M.-R. Järvelin, J. Kaprio, H. Kainulainen, M. Ala-Korpela
Circulation 127, 340-348, 2013

Mika Ala-Korpela | EurekAlert!
Further information:
http://www.uef.fi/fi/uef/home

Further reports about: Department Health Medicine NMR PLoS blood death diseases metabolism prediction responsible spectroscopy

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>