Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood analysis predicts risk of death

26.02.2014

The general state of a person's metabolism can be diversely illustrated with a new scientific blood analysis. With the aid of the analysis biomarkers predicting short-term mortality have now been discovered.

If a person belongs to a risk group based on these biomarker concentrations, he/she has a multifold risk of dying in the next five years compared to the general population. The study is based on blood samples of over 17,000 Finnish and Estonian people.

Mortality was related to four biomarkers in the blood: levels of two proteins (albumin and alpha-1 acidic glycoprotein), lipid metabolism variables (size of large lipoprotein particles responsible for lipid metabolism in the body) and citric acid concentration. These biomarkers relate to normal metabolism and are present in the blood of all people, but according to the study, their relative amounts are crucial.

The biomarkers were independent of known mortality risk factors such as age, smoking, alcohol use, cholesterol, obesity, and blood pressure. The biomarkers associated with mortality also in healthy subjects with no diagnosed diabetes, cancer or vascular diseases.

The new method gives hope that in the future it would be possible to identify increased risk of death at an early stage, so that people could be directed to appropriate follow-up examinations and treatment.

This study is the first of its kind in the world. More research is needed for possible clinical applications in health care.

The new blood analysis utilised in the research was developed by the Computational Medicine Research Group in cooperation between the University of Oulu and the University of Eastern Finland over nearly ten years. The method is based on Nuclear Magnetic Resonance (NMR) spectroscopy and it enables determination of over 200 biomarkers for body metabolism in one blood sample.

The new blood analysis method has been applied in recent years extensively for the research of metabolic diseases such as type 2 diabetes and cardiovascular diseases. Application of this methodology has also provided new information on the health effects of long-term exercise. Around 50 scientific articles have been published on the applications of this method during the last three years.

The current study was cooperation between the University of Oulu, the University of Eastern Finland, the National Institute for Health and Welfare, Institute for Molecular Medicine Finland (FIMM), and Estonian Genome Centre (in the University of Tartu). One of the leaders of this research is Professor Mika Ala-Korpela from the University of Oulu. Dr. Pasi Soininen, the head of the NMR metabolomics laboratory in the University of Eastern Finland, was responsible for the NMR experimentation. The study was published in the prestigious PLoS Medicine publication series on 25 February 2014.

Additional information:

Dr. Mika Ala-Korpela, Professor of Computational Medicine, University of Oulu, Department of Health Sciences, tel. +358 40 1977 657, email: mika.ala-korpela@computationalmedicine.fi

Dr. Pasi Soininen, Head of the Metabolomics Laboratory (technological inquiries), University of Eastern Finland, Department of Pharmacy, tel. +358 40 355 3246, email: pasi.soininen@uef.fi

Home page of the research group: http://www.computationalmedicine.fi/

Scientific publications on this topic:

Latest research paper on this topic:

PLoS Medicine, 11, e1001606, 2014; doi: 10.1371/journal.pmed.1001606
Published 25.2.2014
Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons
K. Fischer, J. Kettunen, P. Würtz, T. Haller, A. S. Havulinna, A. J. Kangas, P. Soininen, T. Esko, M.-L. Tammesoo, R. Mägi, S. Smit, A. Palotie, S. Ripatti, V. Salomaa, M. Ala-Korpela#, M. Perola#, A. Metspalu# (#directors of the research)

Earlier publications related to this topic:

(1) Metabolic signatures of insulin resistance in 7,098 young adults
P. Würtz, V.-P. Mäkinen, P. Soininen, A. J. Kangas, T. Tukiainen, J. Kettunen, M. J. Savolainen, J. S. Viikari, T. Rönnemaa, M. Kähönen, T. Lehtimäki, S. Ripatti, O. T. Raitakari, M.-R. Järvelin, M. Ala-Korpela
Diabetes 61, 1372-1380, 2012

(2) High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis
P. Würtz, J. Raiko, C. G. Magnussen, P. Soininen, A. J. Kangas, T. Tynkkynen, R. Thomson, R. Laatikainen, M. J. Savolainen, J. Laurikka, P. Kuukasjärvi, M. Tarkka, P. J. Karhunen, A. Jula, J. S. Viikari, M. Kähönen, T. Lehtimäki, M. Juonala, M. Ala-Korpela#, O. T. Raitakari# (#directors of the research)
European Heart Journal 33, 2307-2316, 2012

(3) Long-term leisure-time physical activity and serum metabolome
U. M. Kujala, V.-P. Mäkinen, I. Heinonen, P. Soininen, A. J. Kangas, T. H. Leskinen, P. Rahkila, P. Würtz, V. Kovanen, S. Cheng, S. Sipilä, M. Hirvensalo, R. Telama, T. Tammelin, M. J. Savolainen, A. Pouta, P. F. O'Reilly, P. Mäntyselkä, J. Viikari, M. Kähönen, T. Lehtimäki, P. Elliott, M. J. Vanhala, O. T. Raitakari, M.-R. Järvelin, J. Kaprio, H. Kainulainen, M. Ala-Korpela
Circulation 127, 340-348, 2013

Mika Ala-Korpela | EurekAlert!
Further information:
http://www.uef.fi/fi/uef/home

Further reports about: Department Health Medicine NMR PLoS blood death diseases metabolism prediction responsible spectroscopy

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>