Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood analysis predicts risk of death

26.02.2014

The general state of a person's metabolism can be diversely illustrated with a new scientific blood analysis. With the aid of the analysis biomarkers predicting short-term mortality have now been discovered.

If a person belongs to a risk group based on these biomarker concentrations, he/she has a multifold risk of dying in the next five years compared to the general population. The study is based on blood samples of over 17,000 Finnish and Estonian people.

Mortality was related to four biomarkers in the blood: levels of two proteins (albumin and alpha-1 acidic glycoprotein), lipid metabolism variables (size of large lipoprotein particles responsible for lipid metabolism in the body) and citric acid concentration. These biomarkers relate to normal metabolism and are present in the blood of all people, but according to the study, their relative amounts are crucial.

The biomarkers were independent of known mortality risk factors such as age, smoking, alcohol use, cholesterol, obesity, and blood pressure. The biomarkers associated with mortality also in healthy subjects with no diagnosed diabetes, cancer or vascular diseases.

The new method gives hope that in the future it would be possible to identify increased risk of death at an early stage, so that people could be directed to appropriate follow-up examinations and treatment.

This study is the first of its kind in the world. More research is needed for possible clinical applications in health care.

The new blood analysis utilised in the research was developed by the Computational Medicine Research Group in cooperation between the University of Oulu and the University of Eastern Finland over nearly ten years. The method is based on Nuclear Magnetic Resonance (NMR) spectroscopy and it enables determination of over 200 biomarkers for body metabolism in one blood sample.

The new blood analysis method has been applied in recent years extensively for the research of metabolic diseases such as type 2 diabetes and cardiovascular diseases. Application of this methodology has also provided new information on the health effects of long-term exercise. Around 50 scientific articles have been published on the applications of this method during the last three years.

The current study was cooperation between the University of Oulu, the University of Eastern Finland, the National Institute for Health and Welfare, Institute for Molecular Medicine Finland (FIMM), and Estonian Genome Centre (in the University of Tartu). One of the leaders of this research is Professor Mika Ala-Korpela from the University of Oulu. Dr. Pasi Soininen, the head of the NMR metabolomics laboratory in the University of Eastern Finland, was responsible for the NMR experimentation. The study was published in the prestigious PLoS Medicine publication series on 25 February 2014.

Additional information:

Dr. Mika Ala-Korpela, Professor of Computational Medicine, University of Oulu, Department of Health Sciences, tel. +358 40 1977 657, email: mika.ala-korpela@computationalmedicine.fi

Dr. Pasi Soininen, Head of the Metabolomics Laboratory (technological inquiries), University of Eastern Finland, Department of Pharmacy, tel. +358 40 355 3246, email: pasi.soininen@uef.fi

Home page of the research group: http://www.computationalmedicine.fi/

Scientific publications on this topic:

Latest research paper on this topic:

PLoS Medicine, 11, e1001606, 2014; doi: 10.1371/journal.pmed.1001606
Published 25.2.2014
Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons
K. Fischer, J. Kettunen, P. Würtz, T. Haller, A. S. Havulinna, A. J. Kangas, P. Soininen, T. Esko, M.-L. Tammesoo, R. Mägi, S. Smit, A. Palotie, S. Ripatti, V. Salomaa, M. Ala-Korpela#, M. Perola#, A. Metspalu# (#directors of the research)

Earlier publications related to this topic:

(1) Metabolic signatures of insulin resistance in 7,098 young adults
P. Würtz, V.-P. Mäkinen, P. Soininen, A. J. Kangas, T. Tukiainen, J. Kettunen, M. J. Savolainen, J. S. Viikari, T. Rönnemaa, M. Kähönen, T. Lehtimäki, S. Ripatti, O. T. Raitakari, M.-R. Järvelin, M. Ala-Korpela
Diabetes 61, 1372-1380, 2012

(2) High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis
P. Würtz, J. Raiko, C. G. Magnussen, P. Soininen, A. J. Kangas, T. Tynkkynen, R. Thomson, R. Laatikainen, M. J. Savolainen, J. Laurikka, P. Kuukasjärvi, M. Tarkka, P. J. Karhunen, A. Jula, J. S. Viikari, M. Kähönen, T. Lehtimäki, M. Juonala, M. Ala-Korpela#, O. T. Raitakari# (#directors of the research)
European Heart Journal 33, 2307-2316, 2012

(3) Long-term leisure-time physical activity and serum metabolome
U. M. Kujala, V.-P. Mäkinen, I. Heinonen, P. Soininen, A. J. Kangas, T. H. Leskinen, P. Rahkila, P. Würtz, V. Kovanen, S. Cheng, S. Sipilä, M. Hirvensalo, R. Telama, T. Tammelin, M. J. Savolainen, A. Pouta, P. F. O'Reilly, P. Mäntyselkä, J. Viikari, M. Kähönen, T. Lehtimäki, P. Elliott, M. J. Vanhala, O. T. Raitakari, M.-R. Järvelin, J. Kaprio, H. Kainulainen, M. Ala-Korpela
Circulation 127, 340-348, 2013

Mika Ala-Korpela | EurekAlert!
Further information:
http://www.uef.fi/fi/uef/home

Further reports about: Department Health Medicine NMR PLoS blood death diseases metabolism prediction responsible spectroscopy

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>