Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood analysis predicts risk of death

26.02.2014

The general state of a person's metabolism can be diversely illustrated with a new scientific blood analysis. With the aid of the analysis biomarkers predicting short-term mortality have now been discovered.

If a person belongs to a risk group based on these biomarker concentrations, he/she has a multifold risk of dying in the next five years compared to the general population. The study is based on blood samples of over 17,000 Finnish and Estonian people.

Mortality was related to four biomarkers in the blood: levels of two proteins (albumin and alpha-1 acidic glycoprotein), lipid metabolism variables (size of large lipoprotein particles responsible for lipid metabolism in the body) and citric acid concentration. These biomarkers relate to normal metabolism and are present in the blood of all people, but according to the study, their relative amounts are crucial.

The biomarkers were independent of known mortality risk factors such as age, smoking, alcohol use, cholesterol, obesity, and blood pressure. The biomarkers associated with mortality also in healthy subjects with no diagnosed diabetes, cancer or vascular diseases.

The new method gives hope that in the future it would be possible to identify increased risk of death at an early stage, so that people could be directed to appropriate follow-up examinations and treatment.

This study is the first of its kind in the world. More research is needed for possible clinical applications in health care.

The new blood analysis utilised in the research was developed by the Computational Medicine Research Group in cooperation between the University of Oulu and the University of Eastern Finland over nearly ten years. The method is based on Nuclear Magnetic Resonance (NMR) spectroscopy and it enables determination of over 200 biomarkers for body metabolism in one blood sample.

The new blood analysis method has been applied in recent years extensively for the research of metabolic diseases such as type 2 diabetes and cardiovascular diseases. Application of this methodology has also provided new information on the health effects of long-term exercise. Around 50 scientific articles have been published on the applications of this method during the last three years.

The current study was cooperation between the University of Oulu, the University of Eastern Finland, the National Institute for Health and Welfare, Institute for Molecular Medicine Finland (FIMM), and Estonian Genome Centre (in the University of Tartu). One of the leaders of this research is Professor Mika Ala-Korpela from the University of Oulu. Dr. Pasi Soininen, the head of the NMR metabolomics laboratory in the University of Eastern Finland, was responsible for the NMR experimentation. The study was published in the prestigious PLoS Medicine publication series on 25 February 2014.

Additional information:

Dr. Mika Ala-Korpela, Professor of Computational Medicine, University of Oulu, Department of Health Sciences, tel. +358 40 1977 657, email: mika.ala-korpela@computationalmedicine.fi

Dr. Pasi Soininen, Head of the Metabolomics Laboratory (technological inquiries), University of Eastern Finland, Department of Pharmacy, tel. +358 40 355 3246, email: pasi.soininen@uef.fi

Home page of the research group: http://www.computationalmedicine.fi/

Scientific publications on this topic:

Latest research paper on this topic:

PLoS Medicine, 11, e1001606, 2014; doi: 10.1371/journal.pmed.1001606
Published 25.2.2014
Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons
K. Fischer, J. Kettunen, P. Würtz, T. Haller, A. S. Havulinna, A. J. Kangas, P. Soininen, T. Esko, M.-L. Tammesoo, R. Mägi, S. Smit, A. Palotie, S. Ripatti, V. Salomaa, M. Ala-Korpela#, M. Perola#, A. Metspalu# (#directors of the research)

Earlier publications related to this topic:

(1) Metabolic signatures of insulin resistance in 7,098 young adults
P. Würtz, V.-P. Mäkinen, P. Soininen, A. J. Kangas, T. Tukiainen, J. Kettunen, M. J. Savolainen, J. S. Viikari, T. Rönnemaa, M. Kähönen, T. Lehtimäki, S. Ripatti, O. T. Raitakari, M.-R. Järvelin, M. Ala-Korpela
Diabetes 61, 1372-1380, 2012

(2) High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis
P. Würtz, J. Raiko, C. G. Magnussen, P. Soininen, A. J. Kangas, T. Tynkkynen, R. Thomson, R. Laatikainen, M. J. Savolainen, J. Laurikka, P. Kuukasjärvi, M. Tarkka, P. J. Karhunen, A. Jula, J. S. Viikari, M. Kähönen, T. Lehtimäki, M. Juonala, M. Ala-Korpela#, O. T. Raitakari# (#directors of the research)
European Heart Journal 33, 2307-2316, 2012

(3) Long-term leisure-time physical activity and serum metabolome
U. M. Kujala, V.-P. Mäkinen, I. Heinonen, P. Soininen, A. J. Kangas, T. H. Leskinen, P. Rahkila, P. Würtz, V. Kovanen, S. Cheng, S. Sipilä, M. Hirvensalo, R. Telama, T. Tammelin, M. J. Savolainen, A. Pouta, P. F. O'Reilly, P. Mäntyselkä, J. Viikari, M. Kähönen, T. Lehtimäki, P. Elliott, M. J. Vanhala, O. T. Raitakari, M.-R. Järvelin, J. Kaprio, H. Kainulainen, M. Ala-Korpela
Circulation 127, 340-348, 2013

Mika Ala-Korpela | EurekAlert!
Further information:
http://www.uef.fi/fi/uef/home

Further reports about: Department Health Medicine NMR PLoS blood death diseases metabolism prediction responsible spectroscopy

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>