Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bioinformatics tool to visualize transcriptomes

10.03.2014

ZENBU, a new, freely available bioinformatics tool developed at the RIKEN Center for Life Science Technology in Japan, enables researchers to quickly and easily integrate, visualize and compare large amounts of genomic information resulting from large-scale, next-generation sequencing experiments.

Next-generation sequencing has revolutionized functional genomics, with protocols such as RNA-seq, ChIP-seq and CAGE being used widely around the world.

The power of these techniques lies in the fact that they enable the genome-wide discovery of transcripts and transcription factor binding sites, which is key to understanding the molecular mechanisms underlying cell function in healthy and diseased individuals and the development of diseases like cancer.

The integration of data from multiple experiments is an important aspect of the interpretation of results, however the growing number of datasets generated makes a thorough comparison and analysis of results cumbersome.

In a report published today in the journal Nature Biotechnology, Jessica Severin and colleagues describe the development of ZENBU, a tool that combines a genome browser with data analysis and a linked expression view, to facilitate the interactive visualization and comparison of results from large numbers of next-generation sequencing datasets.

The key difference between ZENBU and previous tools is the ability to dynamically combine thousands of experimental datasets in an interactive visualization environment through linked genome location and expression signal views.

This allows scientists to compare their own experiments against the over 6000 ENCODE and FANTOM consortium datasets currently loaded into the system, thus enabling them to discover new and interesting biological mechanisms. The tool is designed to integrate millions of experiments/datasets of any kind (RNA-seq, ChIP-seq or CAGE), hence its name: zenbu means 'all' or 'everything' in Japanese.

ZENBU is freely available for use on the web and for installation in individual laboratories, and all ZENBU sites are connected and continuously share data. The tool can be accessed or downloaded from http://fantom.gsc.riken.jp/zenbu/.

"By distributing the data and servers we encourage scientists to load and share their published data to help build a comprehensive resource to further advance research efforts and collaborations around the world," explain the authors.

###

ZENBU is accessible at http://fantom.gsc.riken.jp/zenbu/

Dr. Forrest and Dr. Severin are available for interviews in English by email. Please contact:

Alistair Forrest, Team leader
Genome Information Analysis Team
Life Science Accelerator Technology Group
Division of Genomic Technologies
RIKEN Center for Life Science Technologies
Email: forrest@gsc.riken.jp

Jessica Severin, Senior Technical Scientist
Genome Information Analysis Team
Life Science Accelerator Technology Group
Division of Genomic Technologies
RIKEN Center for Life Science Technologies
Email: severin@gsc.riken.jp

Alternatively, for more information please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp

A copy of the original Nature Biotechnology article and a figure are available on request.

Reference

  • Jessica Severin, Marina Lizio, Jayson Harshbarger, Hideya Kawaji, Carsten O Daub, Yoshihide Hayashizaki, the FANTOM consortium, Nicolas Bertin, and Alistair RR Forrest. "Interactive visualization and analysis of large-scale NGS data-sets using ZENBU". Nature Biotechnology, http://dx.doi.org/10.1038/nbt.2840 (2013)

     

About RIKEN

RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: http://www.riken.jp Find us on Twitter at @riken_en

About the Center for Life Science Technologies (CLST) The RIKEN Center for Life Science Technologies aims at the development of key technologies for breakthroughs in medical and pharmaceutical applications by conducting ground-breaking research and development programs for next-generation life sciences. CLST comprises the Division of Structural and Synthetic Biology, the Division of Genomic Technologies, and the Division of Bio-function Dynamics Imaging, which will work together in this endeavor. Research and development programs are carried out in collaboration with companies, universities, and international consortia, in order to disseminate the center's achievements to the global community.

Website: http://www.clst.riken.jp/en/index.html

Juliette Savin | EurekAlert!

Further reports about: Accelerator Analysis Biotechnology CAGE Division Genome RIKEN RNA-seq difference experiments mechanisms

More articles from Life Sciences:

nachricht New technology helps ID aggressive early breast cancer
01.07.2016 | University of Michigan Health System

nachricht In times of great famine, microalgae digest themselves
01.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>