Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bioinformatics tool to visualize transcriptomes

10.03.2014

ZENBU, a new, freely available bioinformatics tool developed at the RIKEN Center for Life Science Technology in Japan, enables researchers to quickly and easily integrate, visualize and compare large amounts of genomic information resulting from large-scale, next-generation sequencing experiments.

Next-generation sequencing has revolutionized functional genomics, with protocols such as RNA-seq, ChIP-seq and CAGE being used widely around the world.

The power of these techniques lies in the fact that they enable the genome-wide discovery of transcripts and transcription factor binding sites, which is key to understanding the molecular mechanisms underlying cell function in healthy and diseased individuals and the development of diseases like cancer.

The integration of data from multiple experiments is an important aspect of the interpretation of results, however the growing number of datasets generated makes a thorough comparison and analysis of results cumbersome.

In a report published today in the journal Nature Biotechnology, Jessica Severin and colleagues describe the development of ZENBU, a tool that combines a genome browser with data analysis and a linked expression view, to facilitate the interactive visualization and comparison of results from large numbers of next-generation sequencing datasets.

The key difference between ZENBU and previous tools is the ability to dynamically combine thousands of experimental datasets in an interactive visualization environment through linked genome location and expression signal views.

This allows scientists to compare their own experiments against the over 6000 ENCODE and FANTOM consortium datasets currently loaded into the system, thus enabling them to discover new and interesting biological mechanisms. The tool is designed to integrate millions of experiments/datasets of any kind (RNA-seq, ChIP-seq or CAGE), hence its name: zenbu means 'all' or 'everything' in Japanese.

ZENBU is freely available for use on the web and for installation in individual laboratories, and all ZENBU sites are connected and continuously share data. The tool can be accessed or downloaded from http://fantom.gsc.riken.jp/zenbu/.

"By distributing the data and servers we encourage scientists to load and share their published data to help build a comprehensive resource to further advance research efforts and collaborations around the world," explain the authors.

###

ZENBU is accessible at http://fantom.gsc.riken.jp/zenbu/

Dr. Forrest and Dr. Severin are available for interviews in English by email. Please contact:

Alistair Forrest, Team leader
Genome Information Analysis Team
Life Science Accelerator Technology Group
Division of Genomic Technologies
RIKEN Center for Life Science Technologies
Email: forrest@gsc.riken.jp

Jessica Severin, Senior Technical Scientist
Genome Information Analysis Team
Life Science Accelerator Technology Group
Division of Genomic Technologies
RIKEN Center for Life Science Technologies
Email: severin@gsc.riken.jp

Alternatively, for more information please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp

A copy of the original Nature Biotechnology article and a figure are available on request.

Reference

  • Jessica Severin, Marina Lizio, Jayson Harshbarger, Hideya Kawaji, Carsten O Daub, Yoshihide Hayashizaki, the FANTOM consortium, Nicolas Bertin, and Alistair RR Forrest. "Interactive visualization and analysis of large-scale NGS data-sets using ZENBU". Nature Biotechnology, http://dx.doi.org/10.1038/nbt.2840 (2013)

     

About RIKEN

RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: http://www.riken.jp Find us on Twitter at @riken_en

About the Center for Life Science Technologies (CLST) The RIKEN Center for Life Science Technologies aims at the development of key technologies for breakthroughs in medical and pharmaceutical applications by conducting ground-breaking research and development programs for next-generation life sciences. CLST comprises the Division of Structural and Synthetic Biology, the Division of Genomic Technologies, and the Division of Bio-function Dynamics Imaging, which will work together in this endeavor. Research and development programs are carried out in collaboration with companies, universities, and international consortia, in order to disseminate the center's achievements to the global community.

Website: http://www.clst.riken.jp/en/index.html

Juliette Savin | EurekAlert!

Further reports about: Accelerator Analysis Biotechnology CAGE Division Genome RIKEN RNA-seq difference experiments mechanisms

More articles from Life Sciences:

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

nachricht From vision to hand action
26.07.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>