Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neurons out of sync


Berlin researchers can explain how local information is stored and transported in the brain

This morning, shortly after waking up: did I first go to the bathroom and then turned on the coffee machine in the kitchen—or vice versa? Sometimes you are uncertain whether you have followed an everyday routine as usual or not.

Jorge Jaramillo, first author of the study

Jorge Jaramillo, 2014

The brain has a certain mechanism of storing sequences of spatial events. Part of this mechanism can now be explained by a reasearch team headed by Professor Richard Kempter at the Bernstein Center Berlin and the Humboldt-Universität in Berlin.

The study, entitled: "Modeling Inheritance of phase precession in the hippocampal formation", has been published in The Journal of Neuroscience. Using a computer model, the scientists are able to predict how some nerve cells may stimulate specific neurons in other brain regions to fire in a specific rhythm.

To analyze how the rhythm comes about, the researchers simulated the behavior of nerve cells in the diverse brain regions on the computer. The result of their model: the rhythm may be passed on from one region to the next and does not need to emerge individually in the respective areas.

"Spatial sequences, such as walking routes, are processed in the hippocampus," says Jorge Jaramillo, first author of the study. The hippocampus is a structure in the mammalian brain, which is crucial for the explicit memory (facts, events, sequences). Here are neurons, which are responsible for the so-called "place field": They fire when we find ourselves at a particular point in space.

"If we measure the entire brain activity using EEG (electroencephalography), you see very typical activity oscillations in the hippocampus, the so-called theta rhythm." Nerve cells that are in the process of encoding spatial information start to fire offset in time to this rhythm. This process creates a complex spatial-temporal pattern of electrical brain activity in the brain, which has an important role in the storage of spatial information. The phase-shifted rhythm has been observed in different subregions of the hippocampus – until now it had been unclear how it arises in the individual areas.

"Ultimately, it allows us to better understand other aspects of memory too, not only spatial, as the basic principles are similar," says Jaramillo.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Prof. Dr. Richard Kempter
Department of Biology
Institute for Theoretical Biology (ITB)
Humboldt-Universität zu Berlin
Philippstr. 13, Building number 4 (Ostertaghaus)
10115 Berlin
Tel: +49 (0)30-2093-98404

Original publication:
J. Jaramillo, R. Schmidt, R. Kempter (2014): Modeling Inheritance of Phase Precession in the Hippocampal Formation. The Journal of Neuroscience, 34(22): 7715 – 7731.
doi: 10.1523/JNEUROSCI.5136-13.2014

Mareike Kardinal | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Bernstein Biology Neuroscience activity measure neurons rhythm sequences spatial

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>