Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neurons out of sync


Berlin researchers can explain how local information is stored and transported in the brain

This morning, shortly after waking up: did I first go to the bathroom and then turned on the coffee machine in the kitchen—or vice versa? Sometimes you are uncertain whether you have followed an everyday routine as usual or not.

Jorge Jaramillo, first author of the study

Jorge Jaramillo, 2014

The brain has a certain mechanism of storing sequences of spatial events. Part of this mechanism can now be explained by a reasearch team headed by Professor Richard Kempter at the Bernstein Center Berlin and the Humboldt-Universität in Berlin.

The study, entitled: "Modeling Inheritance of phase precession in the hippocampal formation", has been published in The Journal of Neuroscience. Using a computer model, the scientists are able to predict how some nerve cells may stimulate specific neurons in other brain regions to fire in a specific rhythm.

To analyze how the rhythm comes about, the researchers simulated the behavior of nerve cells in the diverse brain regions on the computer. The result of their model: the rhythm may be passed on from one region to the next and does not need to emerge individually in the respective areas.

"Spatial sequences, such as walking routes, are processed in the hippocampus," says Jorge Jaramillo, first author of the study. The hippocampus is a structure in the mammalian brain, which is crucial for the explicit memory (facts, events, sequences). Here are neurons, which are responsible for the so-called "place field": They fire when we find ourselves at a particular point in space.

"If we measure the entire brain activity using EEG (electroencephalography), you see very typical activity oscillations in the hippocampus, the so-called theta rhythm." Nerve cells that are in the process of encoding spatial information start to fire offset in time to this rhythm. This process creates a complex spatial-temporal pattern of electrical brain activity in the brain, which has an important role in the storage of spatial information. The phase-shifted rhythm has been observed in different subregions of the hippocampus – until now it had been unclear how it arises in the individual areas.

"Ultimately, it allows us to better understand other aspects of memory too, not only spatial, as the basic principles are similar," says Jaramillo.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Prof. Dr. Richard Kempter
Department of Biology
Institute for Theoretical Biology (ITB)
Humboldt-Universität zu Berlin
Philippstr. 13, Building number 4 (Ostertaghaus)
10115 Berlin
Tel: +49 (0)30-2093-98404

Original publication:
J. Jaramillo, R. Schmidt, R. Kempter (2014): Modeling Inheritance of Phase Precession in the Hippocampal Formation. The Journal of Neuroscience, 34(22): 7715 – 7731.
doi: 10.1523/JNEUROSCI.5136-13.2014

Mareike Kardinal | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Bernstein Biology Neuroscience activity measure neurons rhythm sequences spatial

More articles from Life Sciences:

nachricht Antibody-Drug Compounds and Immunotherapy to Treat Breast Cancer
26.11.2015 | Universität Basel

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Antibody-Drug Compounds and Immunotherapy to Treat Breast Cancer

26.11.2015 | Life Sciences

Get to the point with electric cars

26.11.2015 | Power and Electrical Engineering

Climate study finds evidence of global shift in the 1980s

26.11.2015 | Studies and Analyses

More VideoLinks >>>