Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons out of sync

05.08.2014

Berlin researchers can explain how local information is stored and transported in the brain

This morning, shortly after waking up: did I first go to the bathroom and then turned on the coffee machine in the kitchen—or vice versa? Sometimes you are uncertain whether you have followed an everyday routine as usual or not.


Jorge Jaramillo, first author of the study

Jorge Jaramillo, 2014

The brain has a certain mechanism of storing sequences of spatial events. Part of this mechanism can now be explained by a reasearch team headed by Professor Richard Kempter at the Bernstein Center Berlin and the Humboldt-Universität in Berlin.

The study, entitled: "Modeling Inheritance of phase precession in the hippocampal formation", has been published in The Journal of Neuroscience. Using a computer model, the scientists are able to predict how some nerve cells may stimulate specific neurons in other brain regions to fire in a specific rhythm.

To analyze how the rhythm comes about, the researchers simulated the behavior of nerve cells in the diverse brain regions on the computer. The result of their model: the rhythm may be passed on from one region to the next and does not need to emerge individually in the respective areas.

"Spatial sequences, such as walking routes, are processed in the hippocampus," says Jorge Jaramillo, first author of the study. The hippocampus is a structure in the mammalian brain, which is crucial for the explicit memory (facts, events, sequences). Here are neurons, which are responsible for the so-called "place field": They fire when we find ourselves at a particular point in space.

"If we measure the entire brain activity using EEG (electroencephalography), you see very typical activity oscillations in the hippocampus, the so-called theta rhythm." Nerve cells that are in the process of encoding spatial information start to fire offset in time to this rhythm. This process creates a complex spatial-temporal pattern of electrical brain activity in the brain, which has an important role in the storage of spatial information. The phase-shifted rhythm has been observed in different subregions of the hippocampus – until now it had been unclear how it arises in the individual areas.

"Ultimately, it allows us to better understand other aspects of memory too, not only spatial, as the basic principles are similar," says Jaramillo.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Richard Kempter
Department of Biology
Institute for Theoretical Biology (ITB)
Humboldt-Universität zu Berlin
Philippstr. 13, Building number 4 (Ostertaghaus)
10115 Berlin
Tel: +49 (0)30-2093-98404
Email: r.kempter@biologie.hu-berlin.de

Original publication:
J. Jaramillo, R. Schmidt, R. Kempter (2014): Modeling Inheritance of Phase Precession in the Hippocampal Formation. The Journal of Neuroscience, 34(22): 7715 – 7731.
doi: 10.1523/JNEUROSCI.5136-13.2014

Mareike Kardinal | idw - Informationsdienst Wissenschaft
Further information:
http://www.bernstein-netzwerk.de
http://www.nncn.de

Further reports about: Bernstein Biology Neuroscience activity measure neurons rhythm sequences spatial

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>