Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons listen to glia cells

15.12.2014

Communication in the brain: research collaboration uncovers a novel mechanism of altered information processing between neurons / Responsible is a distinct class of glial cells / Major relevance for learning and processing of sensory input / Publication in the prestigious journal PLoS Biology

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have discovered a new signal pathway in the brain that plays an important role in learning and the processing of sensory input. It was already known that distinct glial cells receive information from neurons. However, it was unknown that these same glial cells also transmit information to neurons.


Oligodendrocyte progenitor cells in the brain (OPC, green) influence synaptic signaling between neurones (red) integrated in the neuronal network.

source: Institute of Molecular Cell Biology, JGU


Model of the molecular signaling pathways between OPC (green), a subgroup of glial cells, and the neuronal network (grey). The release of a fragment of the glial NG2 protein by enhanced protease activity in the OPC is a central component (see 1), modulating the signal transduction at defined (excitatory) synapses of the neuronal network (see 2).

source: Institute of Molecular Cell Biology, JGU

The glia release a specific protein fragment that influences neuronal cross-talk, most likely by binding to the synaptic contacts that neurons use for communication. Disruption of this information flow from the glia results in changes in the neural network, for example during learning processes.

The team composed of Dr. Dominik Sakry, Dr. Angela Neitz, Professor Jacqueline Trotter, and Professor Thomas Mittmann unravelled the underlying mechanism, from the molecular and cellular level to the network and finally the resulting behavioral consequences. Their findings constitute major progress in understanding complex pathways of signal transmission in the brain.

In mammalian brains glial cells outnumber nerve cells, but their functions are still largely unelucidated. A group of glial cells, so-called oligodendrocyte precursor cells (OPC), develop into the oligodendrocytes which ensheathe neuronal axons with a protective myelin layer thus promoting the rapid transmission of signals along the axon. Interestingly, these OPCs are present as a stable proportion – some five to eight percent of all cells in all brain regions, including adult brains. The Mainz-based researchers decided to take a closer look at these OPCs.

In 2000 it was discovered that OPCs receive signals from the neural network via synaptic contacts that they make with neurons. "We have now discovered that the precursor cells do not only receive information via the synapses, but in their turn use these to transmit signals to adjacent nerve cells. They are thus an essential component of the network," explained Professor Jacqueline Trotter from the Institute of Molecular Cell Biology at Mainz University.

Classically, neurons have been considered as the major players in the brain. Over the past few years, however, increasing evidence has come to light that glial cells may play an equally important role. "Glial cells are enormously important for our brains and we have now elucidated in detail a novel important role for glia in signal transmission," explained Professor Thomas Mittmann of the JGU Institute of Physiology.

The chain of communication starts with signals traveling from the neurons to the OPCs across the synaptic cleft via the neurotransmitter glutamate. This results in a stimulation of the activity of a specific protease, the alpha-secretase ADAM 10 in OPCs, which acts on the NG2 protein expressed by the precursor cells releasing a NG2 fragment into the extracellular space, where it influences neighboring neuronal synapses. The neurons react to this in the form of altered electrical activity. "We can use patch-clamp techniques to hear, as it were, how the cells talk to one another," said Thomas Mittmann.

"The process starts with the reception of signals coming from the neurons by the OPCs. This means that the feedback to the neurons cannot be seen as separated from the signal reception," explained Dominik Sakry, joint first author of the study, describing the cascade of events. The role of NG2 in this process became apparent when the researchers removed the protein: neuronal synaptic function is altered, modifying learning and disrupting the processing of sensory input that manifests in the form of behavioral changes in test animals.

The evidence that the communication between the two cell types in the brain is not a one-way system but a complex mechanism involving feedback loops was obtained in a collaborative project involving physiologists and molecular biologists. Participating in the project at Mainz University were the Faculties of Biology and Medicine and the Focus Program Translational Neurosciences (FTN) in the form of platform technology provided by the Mouse Behavioral Unit (MBU). The project was additionally supported by two Mainz Collaborative Research Centers (CRC 1080 and CRC-TR 128) and involved participation of the Leibniz Institute for Neurobiology in Magdeburg. Scientists from seven countries participated in the study.

The evidence that the communication between the two cell types in the brain is not a one-way system but a complex mechanism involving feedback loops was obtained within a broad-based project in which both physiologists and molecular biologists collaborated. Participating in the project at Mainz University were the Faculties of Medicine and Biology, the Focus Program Translational Neurosciences (FTN) and its Mouse Behavior Unit (MBU) together with two Mainz Collaborative Research Centers (CRC 1080 and CRC-TR 128) and the Leibniz Institute for Neurobiology in Magdeburg. Scientists from seven countries took part in the study.

Publication:
Dominik Sakry, Angela Neitz et al.
Oligodendrocyte Precursor Cells Modulate the Neuronal Network by Activity-Dependent Ectodomain Cleavage of Glial NG2
PLoS Biology 12(11): e1001993, 11 November 2014
DOI: 10.1371/journal.pbio.1001993

Further information:
Professor Dr. Jacqueline Trotter
Institute of Molecular Cell Biology
Faculty 10: Biology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20263 oder 39-22879
fax +49 6131 39-23840
e-mail: trotter@uni-mainz.de
http://www.blogs.uni-mainz.de/fb10molcellbio/

Professor Dr. Thomas Mittmann
Institute of Physiology
Mainz University Medical Center
D 55099 Mainz
phone +49 0613139-27261
fax +49 6131 39-25560
e-mail: mittmann@uni-mainz.de
http://www.physiologie.uni-mainz.de/

Related links:
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001993 (Article)
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001990 (Synopsis)
http://www.uni-mainz.de/presse/16582_ENG_HTML.php (Press release "Scientists at Mainz University decode mechanisms of cell orientation in the brain", 31 July 2013)

Weitere Informationen:

http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001993 - Article ;
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001990 - Synopsis ;
http://www.uni-mainz.de/presse/16582_ENG_HTML.php - press release "Scientists at Mainz University decode mechanisms of cell orientation in the brain", 31 July 2013

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>