Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Natural HIV control may rely on sequence of T cell receptor protein

Protein on the surface of killer T cells appears to confer ability to suppress viral replication

The rare ability of some individuals to control HIV infection with their immune system alone appears to depend – at least partially – on specific qualities of the immune system's killer T cells and not on how many of those cells are produced.

In a Nature Immunology paper that has received advance online publication, researchers at the Ragon Institute of Massachusetts General Hospital, MIT and Harvard report that – even among individuals sharing a protective version of an important immune system molecule – the ability of HIV-specific killer T cells to control viral replication appears to depend on the particular sequence of the protein that recognizes HIV infected cells.

"We've known for the past 25 years that HIV-infected people have the immune killer cells that recognize and should be able to destroy virus-infected cells, but in most individuals those cells cannot control infection," says Bruce Walker, MD, director of the Ragon Institute and senior author of the Nature Immunology paper. "What this study shows is that the presence of these cells, also called CD8 T cells, is not enough. It turns out that people who can control HIV on their own make killer cells with T cell receptors – proteins that recognize viral fragments displayed on infected cells – that are particularly effective at killing HIV-infected cells."

It has been known for almost two decades that a small minority – about one in 300 – of individuals infected with HIV are naturally able to suppress viral replication with their immune system, keeping viral loads at extremely low levels. In 2006, Ragon Institute investigator Florencia Pereyra, MD, established the International HIV Controllers Study ( to investigate genetic and other differences that may underlie this rare ability. Currently more than 1,500 controllers have enrolled in the study.

Several studies have found that particular versions of a molecule called HLA-B, which helps to flag infected cells for destruction by CD8 T cells, are associated with the ability to naturally control HIV infection. But even among individuals who inherit those versions or alleles of HLA-B, only a few are HIV controllers. A 2010 Ragon Institute study published in Science identified five amino acids within HLA-B that appear to affect the ability to control infection, but that study only explained about 20 percent of the difference in viral load between controllers and individuals in whom the infection progressed.

The current study was designed to search for other factors besides HLA-B that contribute to and possibly determine the ability to control HIV infection. Since many things can affect CD8 T cell response, the investigators enrolled only participants known to express the protective HLA-B27 allele. By selecting persons with HLA B-27 who had extremely high viral loads and comparing them to those with B-27 who were able to control virus, the investigators were able to address whether differences in CD8 T cell function were involved. Although this restricted the study population to five HIV controllers and five progressors, the small sample size allowed comprehensive characterization of a broad range of immune cell functions in study participants.

The experiments first confirmed there was no significant difference in the number of HIV-specific CD8 T cells between controllers and progressors but also found significant variability in the protein sequence of all participants' T cell receptors. Tests of particular functional aspects of the CD8 T cell response found that a subset of cells from controllers were quite efficient at killing infected cells and able to respond to HIV mutations that can allow the virus to escape immune control. No such effective cells were found in samples from progressors. Detailed sequencing of HIV-specific CD8 cells from three controllers and two progressors found that the specific protein sequence of T cell receptors – which affects their structure and ability to recognize infected cells – appears to make the difference.

"A big remaining question is why these particularly effective killer cells are generated in some people but not in others. At this point we don't know why, but now we know what we are looking for," says Walker, a professor of Medicine at Harvard Medical School. "We also need to investigate whether a vaccine can induce production of these effective killer cells. HIV is slowly revealing its secrets, and each revelation helps us focus the search for the next secret, bringing us closer and closer to our goal of conquering HIV." Walker is also a Howard Hughes Medical Institute (HHMI) investigator

Co-lead authors of the Nature Immunology paper are Huabiao Chen, PhD, and Zaza Ndhlovu, PhD, Ragon Institute and HHMI. Additional co-authors include Todd Allen, PhD, Florencia Pereyra, MD, and Xu Yu, MD, Ragon Institute; Mark Brockman, PhD, Ragon Institute and Simon Fraser University, Burnaby, Canada; and Daniel Douek, MD, PhD, National Institute for Allergy and Infectious Diseases. Support for the study includes grants from the Harvard Center for AIDS Research, the Bill and Melinda Gates Foundation, the Doris Duke Charitable Foundation, the National Institutes of Health and the Mark and Lisa Schwartz Foundation.

The Ragon Institute of MGH, MIT and Harvard was established in 2009 with a gift from the Philip T. and Susan M. Ragon Foundation, creating a collaborative scientific mission among these institutions to harness the immune system to combat and cure human diseases. The primary initial focus of the institute is to contribute to the development of an effective AIDS vaccine. The Ragon Institute draws scientists and engineers from diverse backgrounds and areas of expertise across the Harvard and MIT communities and throughout the world, in order to apply the full arsenal of scientific knowledge to understanding mechanisms of immune control and immune failure and to apply these advances to directly benefit patients.

Sarah Dionne | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>