Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoscale imaging may lead to new treatments for multiple sclerosis

24.05.2011
Laboratory studies by chemical engineers at UC Santa Barbara may lead to new experimental methods for early detection and diagnosis –– and to possible treatments –– for pathological tissues that are precursors to multiple sclerosis and similar diseases.

Achieving a new method of nanoscopic imaging, the scientific team studied the myelin sheath, the membrane surrounding nerves that is compromised in patients with multiple sclerosis (MS). The study is published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS).

"Myelin membranes are a class of biological membranes that are only two molecules thick, less than one millionth of a millimeter," said Jacob Israelachvili, one of the senior authors and professor of chemical engineering and of materials at UCSB. "The membranes wrap around the nerve axons to form the myelin sheath."

He explained that the way different parts of the central nervous system, including the brain, communicate with each other throughout the body is via the transmission of electric impulses, or signals, along the fibrous myelin sheaths. The sheaths act like electric cables or transmission lines.

"Defects in the molecular or structural organization of myelin membranes lead to reduced transmission efficiency," said Israelachvilli. "This results in various sensory and motor disorders or disabilities, and neurological diseases such as multiple sclerosis."

At the microscopic level and the macroscopic level, which is visible to the eye, MS is characterized by the appearance of lesions or vacuoles in the myelin, and eventually results in the complete disintegration of the myelin sheath. This progressive disintegration is called demyelination.

The researchers focused on what happens at the molecular level, commonly referred to as the nanoscopic level. This requires highly sensitive visualization and characterization techniques.

The article describes fluorescence imaging and other measurements of domains, which are small heterogeneous clusters of lipid molecules –– the main constituents of myelin membranes –– that are likely to be responsible for the formation of lesions. They did this using model molecular layers in compositions that mimic both healthy and diseased myelin membranes.

They observed differences in the appearance, size, and sensitivity to pressure, of domains in the healthy and diseased monolayers. Next, they developed a theoretical model, in terms of certain molecular properties, that appears to account quantitatively for their observations.

"The discovery and characterization of micron-sized domains that are different in healthy and diseased lipid assemblies have important implications for the way these membranes interact with each other," said Israelachvili. "And this leads to new understanding of demyelination at the molecular level."

The findings pave the way for new experimental methods for early detection, diagnosis, staging, and possible treatment of pathological tissues that are precursors to MS and other membrane-associated diseases, according to the authors.

All of the work reported in the paper was completed at UCSB, although some of the authors have moved to other institutions. In addition to Israelachvili, the other authors are Dong Woog Lee, graduate student in UCSB's Department of Chemical Engineering; Younjin Min, now a postdoctoral fellow in the Department of Chemical Engineering at the Massachusetts Institute of Engineering; Prajnaparamitra Dhar, now assistant professor in the Department of Chemical Engineering at the University of Kansas; Arun Ramachandran, now assistant professor in the Department of Chemical Engineering and Applied Chemistry at the University of Toronto; and Joseph A. Zasadzinski, now professor in the Department of Chemical Engineering and Materials Science at the University of Minnesota.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>