Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocapsules for artificial photosynthesis

06.11.2009
Imitating photosynthesis in plants? If we were to accomplish this, mankind would have a little less to worry about. Chemists from the University of Würzburg have now made progress on the road to achieving artificial photosynthesis.

The structure that has been developed in the university's Organic Chemistry laboratory is fascinatingly complex: thousands of similar molecules are packed together to create a capsule that is filled with molecules of a different kind. The diameter of one capsule is a mere 20 to 50 nanometers, which is one ten-thousandth of a pinhead.


Nanocapsule, made in Würzburg: Thousands of similar molecules are packed together to create a capsule that is filled with molecules of a different kind. Figure: Institute of Organic Chemistry, University of Würzburg

Structures that are so elaborate are far from the ordinary in chemistry. So, it is hardly surprising that these Würzburg nanocapsules appear on the front page of the November issue of the journal "Nature Chemistry". What is more, they can also do something that has not been described before for chemically synthesized molecules.

Encapsulated molecules transmit energy

Nanocapsules possess a property that is important in photosynthesis in plants: the molecules inside the capsule absorb light energy and emit some of this again in the form of fluorescent light. The rest of it, however, is transmitted by energy transfer to the capsule molecules, which then also cast fluorescent light.

As far as photosynthesis is concerned nothing different happens, to put it simply: molecules harness energy from sunlight and transmit it to other molecules in a complex process, at the end of which the energy is bound chemically. The sun's power then sits in valuable carbohydrates that plants, animals, and people use to generate the energy they need to live.

In principle, therefore, the nanocapsules should make suitable components for an artificial photosynthesis contraption. "They would even use the light far more efficiently than plants because their synthetic bilayer membranes would be composed entirely of photoactive material," says Professor Frank Würthner.

The value of artificial photosynthesis

Why conduct research into artificial photosynthesis? In photosynthesis, plants consume the "climate killer" that is carbon dioxide. In view of global warming, many scientists see artificial photosynthesis as a possible way of reducing the volume of the greenhouse gas carbon dioxide in the atmosphere. In addition, this process would also create valuable raw materials: sugar, starch, and the gas methane.

Unique material for the capsule shell

The Würzburg nanocapsules are comprised of a unique material. This was developed in Frank Würthner's working group on the basis of so-called amphiphilic perylene bisimides. If the base material, which can be isolated as a powder, is placed in water, its molecules automatically form so-called vesicles, though these are not stable at that point. It is only through photopolymerization with light that they become robust nanocapsules that are stable in an aqueous solution - regardless of its pH value.

Bispyrenes as the filling inside the capsules

It was the visiting scientist from China, Dr. Xin Zhang, who managed to fill the nanocapsules with other photoactive molecules. A fellow of the Humboldt Foundation, he is currently a member of Professor Würthner's working group.

Zhang smuggled bispyrene molecules into the nanocapsules. The special thing about these molecules is that they change their shape to suit their environment. Where the pH value is low, in other words in an acidic environment, they assume an elongated form. If they are then excited with UV light, they emit blue fluorescent light.

If the pH value rises, the molecules fold. In this shape they emit green fluorescent light. In this state the bispyrenes excite the capsule shell energetically, which reacts to this with red fluorescence.

Blue, green, and red. If the three primary colors overlap, this produces white - as with a color television. It is the same with the nanocapsules: with a pH value of 9, in other words just right of neutral, they emit white fluorescent light - "a so far unique effect in the field of chemical sensing, which might be groundbreaking for the design of fluorescence probes for life sciences," explains Professor Würthner.

Nanoprobe for pH measurements

The Würzburg chemists have access to an extremely sensitive nanoprobe: the pH value of an aqueous solution can be determined with nanoscale spatial resolution over the wavelength of the fluorescent light emitted by the nanocapsules.

This means that nanocapsules are not just an option for artificial photosynthesis, they can also be used for diagnostic applications. For example, they could be equipped with special surface structures that purposefully dock to tumor cells and then make these visible by means of fluorescence.

Both possible applications are the subject of further research by Frank Würthner and his team. The work described here was funded by the German Research Foundation (DFG).

Contact

Prof. Dr. Frank Würthner, T (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

"Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems", Xin Zhang, Stefanie Rehm, Marina M. Safont-Sempere & Frank Würthner, Nature Chemistry 1, 623 - 629 (2009), doi:10.1038/nchem.368

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/fuer/studierende/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>