Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocapsules for artificial photosynthesis

06.11.2009
Imitating photosynthesis in plants? If we were to accomplish this, mankind would have a little less to worry about. Chemists from the University of Würzburg have now made progress on the road to achieving artificial photosynthesis.

The structure that has been developed in the university's Organic Chemistry laboratory is fascinatingly complex: thousands of similar molecules are packed together to create a capsule that is filled with molecules of a different kind. The diameter of one capsule is a mere 20 to 50 nanometers, which is one ten-thousandth of a pinhead.


Nanocapsule, made in Würzburg: Thousands of similar molecules are packed together to create a capsule that is filled with molecules of a different kind. Figure: Institute of Organic Chemistry, University of Würzburg

Structures that are so elaborate are far from the ordinary in chemistry. So, it is hardly surprising that these Würzburg nanocapsules appear on the front page of the November issue of the journal "Nature Chemistry". What is more, they can also do something that has not been described before for chemically synthesized molecules.

Encapsulated molecules transmit energy

Nanocapsules possess a property that is important in photosynthesis in plants: the molecules inside the capsule absorb light energy and emit some of this again in the form of fluorescent light. The rest of it, however, is transmitted by energy transfer to the capsule molecules, which then also cast fluorescent light.

As far as photosynthesis is concerned nothing different happens, to put it simply: molecules harness energy from sunlight and transmit it to other molecules in a complex process, at the end of which the energy is bound chemically. The sun's power then sits in valuable carbohydrates that plants, animals, and people use to generate the energy they need to live.

In principle, therefore, the nanocapsules should make suitable components for an artificial photosynthesis contraption. "They would even use the light far more efficiently than plants because their synthetic bilayer membranes would be composed entirely of photoactive material," says Professor Frank Würthner.

The value of artificial photosynthesis

Why conduct research into artificial photosynthesis? In photosynthesis, plants consume the "climate killer" that is carbon dioxide. In view of global warming, many scientists see artificial photosynthesis as a possible way of reducing the volume of the greenhouse gas carbon dioxide in the atmosphere. In addition, this process would also create valuable raw materials: sugar, starch, and the gas methane.

Unique material for the capsule shell

The Würzburg nanocapsules are comprised of a unique material. This was developed in Frank Würthner's working group on the basis of so-called amphiphilic perylene bisimides. If the base material, which can be isolated as a powder, is placed in water, its molecules automatically form so-called vesicles, though these are not stable at that point. It is only through photopolymerization with light that they become robust nanocapsules that are stable in an aqueous solution - regardless of its pH value.

Bispyrenes as the filling inside the capsules

It was the visiting scientist from China, Dr. Xin Zhang, who managed to fill the nanocapsules with other photoactive molecules. A fellow of the Humboldt Foundation, he is currently a member of Professor Würthner's working group.

Zhang smuggled bispyrene molecules into the nanocapsules. The special thing about these molecules is that they change their shape to suit their environment. Where the pH value is low, in other words in an acidic environment, they assume an elongated form. If they are then excited with UV light, they emit blue fluorescent light.

If the pH value rises, the molecules fold. In this shape they emit green fluorescent light. In this state the bispyrenes excite the capsule shell energetically, which reacts to this with red fluorescence.

Blue, green, and red. If the three primary colors overlap, this produces white - as with a color television. It is the same with the nanocapsules: with a pH value of 9, in other words just right of neutral, they emit white fluorescent light - "a so far unique effect in the field of chemical sensing, which might be groundbreaking for the design of fluorescence probes for life sciences," explains Professor Würthner.

Nanoprobe for pH measurements

The Würzburg chemists have access to an extremely sensitive nanoprobe: the pH value of an aqueous solution can be determined with nanoscale spatial resolution over the wavelength of the fluorescent light emitted by the nanocapsules.

This means that nanocapsules are not just an option for artificial photosynthesis, they can also be used for diagnostic applications. For example, they could be equipped with special surface structures that purposefully dock to tumor cells and then make these visible by means of fluorescence.

Both possible applications are the subject of further research by Frank Würthner and his team. The work described here was funded by the German Research Foundation (DFG).

Contact

Prof. Dr. Frank Würthner, T (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

"Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems", Xin Zhang, Stefanie Rehm, Marina M. Safont-Sempere & Frank Würthner, Nature Chemistry 1, 623 - 629 (2009), doi:10.1038/nchem.368

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/fuer/studierende/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>