Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano form of titanium dioxide can be toxic to marine organisms

25.01.2012
Ultraviolet radiation is the catalyst for cellular damage in phytoplankton

The Bren School-based authors of a study published Jan. 20 in the journal PLoS ONE have observed toxicity to marine organisms resulting from exposure to a nanoparticle that had not previously been shown to be toxic under similar conditions.

Lead author and assistant research biologist Robert Miller and co-authors Arturo Keller and Hunter Lenihan – both Bren School professors and lead scientists at the UC Center for Environmental Implications of Nanotechnology (UC CEIN) – Bren Phd student Samuel Bennett, and Scott Pease, a former UCSB undergraduate and current graduate student in public health at the University of Washington, found that the nanoparticulate form of titanium dioxide (TiO2) exposed to ultraviolet radiation (UVR) can be toxic to marine organisms.

"Application of nanomaterials in consumer products and manufacturing is quickly increasing, but there is concern that these materials, including nanoparticles, may harm the environment," says Miller. "The oceans could be most at risk, since wastewater and factory discharges ultimately end up there."

Nano-titanium dioxide is highly reactive to sunlight and other forms of ultraviolet radiation (UVR,) the authors write, adding that TiO2's property of generating reactive oxygen species (ROS) when exposed to UVR makes it useful in antibacterial coatings and wastewater disinfection, and potentially valuable as an anti-cancer agent.

Until now, they say, no research has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR.

"Previous experiments have suggested that TiO2 does not affect aquatic organisms, but these experiments used artificial lighting that generated much lower levels of UVR than sunlight," Miller explains. "In these new experiments, we used lights simulating natural sunlight."

But now, the authors say, "We show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth.

"With no exposure to UVR, the TiO2 had no effect on phytoplankton, but under low-intensity UVR, ROS in seawater increased with increasing concentrations of nano- TiO2."

The concern is that rising concentrations of nano- TiO2 "may lead to increased overall oxidative stress in seawater contaminated by TiO22, and cause decreased resiliency of marine ecosystems."

The authors suggest, therefore, that UVR exposure should be considered when conducting experiments to determine the ecotoxicity of nanomaterials having photoactive potential.

James Badham | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>