Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple Sclerosis: Benefactors in the Brain

10.07.2009
The inflammatory process in the brain of multiple sclerosis patients is triggered by their own immune system. However, there is one type of immune cells that seems to fight against the destructive progress - and might be used for therapeutic purposes in future.

These "beneficial" immune cells display a propensity to migrate from the blood into inflamed nervous tissue. "Drawn in by specific chemoattractants, they obviously counteract the detrimental effects of other immune cells in the brain," explains Heinz Wiendl, Professor at the Department of Neurology of the University of Würzburg.

Wiendl's research group presents this new research results in the journal Annals of Neurology. The findings are based on a variety of experiments using biomaterial from multiple sclerosis (MS) patients including blood, cerebrospinal fluid and tissue of the central nervous system (CNS).

A concept for a new form of therapy?

Thus, this work represents a demonstration of the existence of protective elements in the immune activities within the brain of MS patients. Conceptually this beneficial inflammatory factor should counterbalance inflammation in the CNS, but their impact obviously is not strong enough to dampen the disease. However, the notion of such activities might be enhanced in a therapeutic approach eventually benefiting the patients.

How can this be achieved? "An answer to this question as well as a possible practical approach is the long-term objective of our work," says Wiendl. But the next step for the Würzburg researchers is to characterize this regulatory T-cell population more precisely and to find ways of using them for therapeutic purposes.

Interesting molecules on the surface

The beneficial immune cells have been identified as so-called naturally regulatory T-cells. Wiendl's team discovered and described them in a publication in the journal Blood in 2007.

The characteristic of these cells: On their surface, they express a protein called HLA-G, which is attributed to have a strong immunosuppressive function. The signal for the migration of the cells into inflamed tissue is obviously influenced by another surface molecule, the so-called chemokine receptor CCR5. This is an additional new finding of the Würzburg scientists.

Multiple sclerosis: about the disease

Globally, approximately 2.5 million people are affected by multiple sclerosis; in Germany, there are about 122,000 patients according to current estimates. Here, approximately 2,500 new cases of the disease are diagnosed per year. Women aquire the disease almost twice as often as men.

In MS patients, the immune system mistakenly attacks the components of the nervous system, most prominently the nerve sheaths eventually destructing neural cells. Most often, the onset of the disease starts in early adulthood with relapsing remitting neurological symptoms. Initially people affected perceive tingling sensations in arms and legs, have walking disturbances or encounter visual problems. In the course of disease patients often acquire permanent disability. Some of them need a wheel-chair at later stages.

At the moment, there is no cure for multiple sclerosis; however, medical treatment can alleviate the symptoms of the patients and improve their quality of life. The Department of Neurology in Würzburg accommodates more than 2000 MS patients.

Specific Central Nervous System Recruitment of HLA-G+ Regulatory T Cells in Multiple Sclerosis, Huang YH, Zozulya A, Weidenfeller C, Metz I, Buck D, Toyka KV, Brück W, Wiendl H., Annals of Neurology 2009; DOI: 10.1002/ana.21705

Contact

Prof. Dr. Heinz Wiendl, T ++ 49 (931) 201-23755 or ++ 49 (931)201-23756, heinz.wiendl@klinik.uni-wuerzburg.de

About Heinz Wiendl

Professor Heinz Wiendl is in charge of the clinical research group for multiple sclerosis and neuroimmunology at the Department of Neurology of the University of Würzburg. The work of the research group is funded by the German Research Foundation (DFG). Furthermore, Wiendl is currently the speaker of the Multiple Sclerosis Competence Network, which is funded by the German Federal Ministry of Education and Research.

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>