Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New multi-use device can shed light on oxygen intake

24.09.2009
A fiber-optic sensor created by a team of Purdue University researchers that is capable of measuring oxygen intake rates could have broad applications ranging from plant root development to assessing the effectiveness of chemotherapy drugs.

The self-referencing optrode, developed in the lab of Marshall Porterfield, an associate professor of agricultural and biological engineering, is non-invasive, can deliver real-time data, holds a calibration for the sensor's lifetime and doesn't consume oxygen like traditional sensors that can compete with the sample being measured. A paper on the device was released on the early online version of the journal The Analyst this week.

"It's very sensitive in terms of the biological specimens we can monitor," Porterfield said. "We don't only measure oxygen concentration, we measure the flux. That's what's important for biologists."

Mohammad Rameez Chatni, a doctoral student in Porterfield's lab, said the sensor could be used broadly across disciplines. Testing included tumor cells, fish eggs, spinal cord material and plant roots.

Cancerous cells typically intake oxygen at higher rates than healthy cells, Chatni said. Measuring how a chemotherapy drug affects oxygen intake in both kinds of cells would tell a researcher whether the treatment was effective in killing tumors while leaving healthy cells unaffected.

Plant biologists might be interested in the sensor to measure oxygen intake of a genetically engineered plant's roots to determine its ability to survive in different types of soil.

"This tool could have applications in biomedical science, agriculture, material science. It's going across all disciplines," Chatni said.

The sensor is created by heating an optical fiber and pulling it apart to create two pointed optrodes about 15 microns in diameter, about one-tenth the size of a human hair. A membrane containing a fluorescent dye is placed on the tip of an optrode.

Oxygen binds to the fluorescent dye. When a blue light is passed through the optrode, the dye emits red light back. The complex analysis of that red light reveals the concentration of oxygen present at the tip of the optrode.

The optrode is oscillated between two points, one just above the surface of the sample and another a short distance away. Based on the difference in the oxygen concentrations, called flux, the amount of oxygen being taken in by the sample is calculated.

It's the intake, or oxygen transportation, that Porterfield said is important to understand.

"Just knowing the oxygen concentration in or around a sample will not necessarily correlate to the underlying biological processes going on," he said.

Porterfield said future work will focus on altering the device to measure things such as sodium and potassium intake as well. The National Science Foundation funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Marshall Porterfield, 765-494-1190, porterf@purdue.edu
Mohammad Rameez Chatni, 765-496-4701, mchatni@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu
http://news.uns.purdue.edu/images/+2009/porterfield-optrode.jpg

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>