Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Münster researchers make ongoing inflammation in the human brain visible

10.11.2016

For the first time, Researchers at the Cells-in-Motion Cluster of Excellence (CiM) at Münster University have been able to image ongoing inflammation in the brain of patients suffering from multiple sclerosis.

The ultimate aim in biomedical research is the transfer of results from experiments carried out in animals to patients. Researchers at the Cells-in-Motion Cluster of Excellence (CiM) at the University of Münster have succeeded in doing so.


Researchers at the Cells-in-Motion Cluster of Excellence have visualized inflammation in the brain of mice (l.) and of MS patients (r.). To do so, they labelled specific enzymes (MMPs).

Reprinted with permission from Gerwien and Hermann et al., Sci. Transl. Med. 8, 364ra152 (2016) 9 November 2016

For the first time, they have been able to image ongoing inflammation in the brain of patients suffering from multiple sclerosis (MS). This involved specialists from different disciplines working together in a unique way over several years, combining immunology, neurology and imaging technologies ranging from microscopy to whole-body imaging.

The consequences of an inflammation in the brain can already be shown using a clinically established process: magnetic resonance imaging (MRI). Making the inflammation itself visible too could, in future, help not only to more accurately diagnose multiple sclerosis patients but also to monitor therapies and apply them in a more specific way. The study has been published in the prestigious journal "Science Translational Medicine".

Occurring mostly in sporadic attacks, the flares associated with multiple sclerosis cause patients considerable discomfort. In this autoimmune disease, immune cells – in other words, cells from the body's own defence system – target the very organism they are supposed to protect. To do so, they must first penetrate the so-called blood-brain barrier to then be able to attack the central nervous system.

For the first time, CiM researchers have used certain enzymes – matrix metalloproteinases (MMPs) – to image inflammation in the brain that typically occurs during flares in MS patients. In a preliminary study, biologists and biochemists in a team headed by CiM Spokesperson Prof. Lydia Sorokin discovered that these enzymes play a pivotal role. They had investigated mice with a similar disease to MS and found that MMPs are essential for immune cell penetration of the blood-brain barrier and their migration into the brain, where they cause inflammation.

In order to label these enzymes in the brain and visualize them through specialized imaging techniques, a team of chemists and nuclear medicine specialists headed by one of CiM Coordinators, Prof. Michael Schäfers, developed a tracer – a chemical substance that tracks down the active enzymes in the body and binds to them. The chemists linked the MMP tracer with a fluorescent dye. The fluorescence light signals from such a tracer can be measured using optical imaging techniques. Via the tracer signal the researchers were able to localize and measure the activity of the enzymes, initially in mice. "We found that our observations of MMP activity provided precise information on where immune cells penetrate the blood-brain barrier and where inflammation occurs in the brain," says Dr. Hanna Gerwien, a molecular biologist.

First case studies with patients

The researchers have now succeeded in transferring the method to humans. However, it was not possible to use the fluorescent tracer because its light signal would not penetrate the skull of a patient. The researchers therefore modified the tracer, adding a radioactive signal transmitter instead of a fluorescent dye. The radiation it emits can be measured and made visible using a special method, positron emission tomography (PET). Nuclear medicine specialists and neurologists at the Cluster of Excellence in Münster (who also work at Münster University Hospital) have now carried out the first case studies on MS patients. The result was that in patients with acute attacks of MS the tracer accumulated clearly in defined areas, even before any damage to the blood-brain barrier could be measured using the traditional method, magnetic resonance imaging.

"It really was something special to be able to corroborate something in a patient that had already discovered in basic research in experiments on animals," says Dr. Sven Hermann, an expert in nuclear medicine and small animal imaging, "it's what every scientist dreams of". The scientists also observed, as they predicted, that little or no tracer accumulated after the patients had undergone anti-inflammatory therapy.

The investigation described here is a pilot study. This process has not been used in clinical practice. The work was supported by the Cells-in-Motion Cluster of Excellence, the Collaborative Research Centre 656 "Molecular Cardiovascular Imaging" and the Collaborative Research Centre TR-128 "Multiple Sclerosis" at the University of Münster.

Original publication:

Gerwien H*, Hermann S*, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schäfers M*, Sorokin L*. Imaging Matrix Metalloproteinase Activity in Multiple Sclerosis as a Specific Marker of Leukocyte Penetration of the Blood-Brain Barrier. Science Translational Medicine, DOI: 10.1126/scitranslmed.aaf8020 (*equal contribution)

Cells-in-Motion Cluster of Excellence/Media contact:

Svenja Ronge
Media Relations Manager
Tel.: +49 251 83-49310
svenja.ronge@uni-muenster.de

Weitere Informationen:

http://www.uni-muenster.de/Cells-in-Motion/newsviews/2016/11-10.html Further information and detailed picture description (CiM webpage)
http://stm.sciencemag.org/content/8/364/364ra152 Original publication
https://www.uni-muenster.de/Cells-in-Motion/de/ "Cells in Motion" Cluster of Excellence
http://www.sciencemag.org/ "Science" Homepage

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>