Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Research of Zebrafish Neurons May Lead to Better Understanding of Birth Defects like Spina Bifida

19.02.2014
The zebrafish, a tropical freshwater fish similar to a minnow and native to the southeastern Himalayan region, is well established as a key tool for researchers studying human diseases, including brain disorders.

Using zebrafish, scientists can determine how individual neurons develop, mature and support basic functions like breathing, swallowing and jaw movement. Researchers at the University of Missouri say that learning about neuronal development and maturation in zebrafish could lead to a better understanding of birth defects such as spina bifida in humans.

“We are studying how neurons move to their final destinations,” said Anand Chandrasekhar, professor of biological sciences and a researcher in the Bond Life Sciences Center at MU. “It’s especially critical in the nervous system because these neurons are generating circuits similar to what you might see in computers. If those circuits don’t form properly, and if different types of neurons don’t end up in the right locations, the behavior and survival of the animal will be compromised.”

The scientists studied zebrafish embryos, which are nearly transparent, making internal processes easy to observe. Using modified zebrafish expressing green fluorescent jellyfish protein, Chandrasekhar and his team were able to track neuronal migration.

“This approach is used extensively to visualize a group of cells,” Chandrasekhar said. “In our study, clusters of green cells glowed and indicated where motor neurons were located in the brain. Some groupings are shaped like sausages while others are round, but each cluster of 50 to150 cells sends out signals to different groups of jaw muscles.”

These motor neurons that Chandrasekhar studied are located in the hindbrain, which corresponds to the human brainstem and controls gill and jaw movement in these tiny fish. Genes controlling the development and organization of these neurons in zebrafish are functionally similar to genes in higher vertebrates including mammals.

Chandrasekhar’s work contributes to a better understanding of how neuronal networks are organized and “wired” during development. These studies also may provide insight into birth defects like spina bifida, which affects 1 in every 2,000 births, according to the National Institutes of Health.

“One of the hallmarks of spina bifida is an open neural tube in the spinal cord,” Chandrasekhar said. “The cells closing the neural tube actually know left from right, and front from back, just like the neurons migrating to their appointed places in the zebrafish hindbrain. Additionally, mutations in many genes that result in defective neuronal migration can lead to defects in neural tube closure. We anticipate that understanding the genes and mechanisms controlling neuronal migration in zebrafish will shed light on the mechanisms of human neural tube closure, and why this process goes awry in spina bifida.”

Chandrasekhar’s study, “Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish” was recently published in February 2014 edition of Mechanisms of Development. He also published a related study, “The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function,” in the October 2013 edition of Developmental Biology.

Editor’s Note: For another article on this study please visit: “Mind map: Bond LSC research explains how proteins guide migrating neurons.”

Also, Chandrasekhar’s work is featured on the SciXchange blog at: “Fish and free throws.”

Story Contact(s):
Jeff Sossamon, sossamonj@missouri.edu, 573-882-3346
Roger Meissen, MeissenR@missouri.edu, (573) 884-7443

Jeff Sossamon | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>