Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Research of Zebrafish Neurons May Lead to Better Understanding of Birth Defects like Spina Bifida

19.02.2014
The zebrafish, a tropical freshwater fish similar to a minnow and native to the southeastern Himalayan region, is well established as a key tool for researchers studying human diseases, including brain disorders.

Using zebrafish, scientists can determine how individual neurons develop, mature and support basic functions like breathing, swallowing and jaw movement. Researchers at the University of Missouri say that learning about neuronal development and maturation in zebrafish could lead to a better understanding of birth defects such as spina bifida in humans.

“We are studying how neurons move to their final destinations,” said Anand Chandrasekhar, professor of biological sciences and a researcher in the Bond Life Sciences Center at MU. “It’s especially critical in the nervous system because these neurons are generating circuits similar to what you might see in computers. If those circuits don’t form properly, and if different types of neurons don’t end up in the right locations, the behavior and survival of the animal will be compromised.”

The scientists studied zebrafish embryos, which are nearly transparent, making internal processes easy to observe. Using modified zebrafish expressing green fluorescent jellyfish protein, Chandrasekhar and his team were able to track neuronal migration.

“This approach is used extensively to visualize a group of cells,” Chandrasekhar said. “In our study, clusters of green cells glowed and indicated where motor neurons were located in the brain. Some groupings are shaped like sausages while others are round, but each cluster of 50 to150 cells sends out signals to different groups of jaw muscles.”

These motor neurons that Chandrasekhar studied are located in the hindbrain, which corresponds to the human brainstem and controls gill and jaw movement in these tiny fish. Genes controlling the development and organization of these neurons in zebrafish are functionally similar to genes in higher vertebrates including mammals.

Chandrasekhar’s work contributes to a better understanding of how neuronal networks are organized and “wired” during development. These studies also may provide insight into birth defects like spina bifida, which affects 1 in every 2,000 births, according to the National Institutes of Health.

“One of the hallmarks of spina bifida is an open neural tube in the spinal cord,” Chandrasekhar said. “The cells closing the neural tube actually know left from right, and front from back, just like the neurons migrating to their appointed places in the zebrafish hindbrain. Additionally, mutations in many genes that result in defective neuronal migration can lead to defects in neural tube closure. We anticipate that understanding the genes and mechanisms controlling neuronal migration in zebrafish will shed light on the mechanisms of human neural tube closure, and why this process goes awry in spina bifida.”

Chandrasekhar’s study, “Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish” was recently published in February 2014 edition of Mechanisms of Development. He also published a related study, “The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function,” in the October 2013 edition of Developmental Biology.

Editor’s Note: For another article on this study please visit: “Mind map: Bond LSC research explains how proteins guide migrating neurons.”

Also, Chandrasekhar’s work is featured on the SciXchange blog at: “Fish and free throws.”

Story Contact(s):
Jeff Sossamon, sossamonj@missouri.edu, 573-882-3346
Roger Meissen, MeissenR@missouri.edu, (573) 884-7443

Jeff Sossamon | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Protein Shake-Up
27.03.2015 | Oak Ridge National Laboratory

nachricht How did the chicken cross the sea?
27.03.2015 | Michigan State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>