Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study reveals genetic component of empathy

11.02.2009
The ability to empathize with others is partially determined by genes, according to new research on mice from the University of Wisconsin-Madison and Oregon Health and Science University (OHSU).

In the study, a highly social strain of mice learned to associate a sound played in a specific cage with something negative simply by hearing a mouse in that cage respond with squeaks of distress.

A genetically different mouse strain with fewer social tendencies did not learn any connection between the cues and the other mouse's distress, showing that the ability to identify and act on another's emotions may have a genetic basis. The new research will publish Wednesday, Feb. 11, in the Public Library of Science ONE journal at http://dx.plos.org/10.1371/journal.pone.0004387.

Like humans, mice can automatically sense and respond to others' positive and negative emotions, such as excitement, fear or anger. Understanding empathy in mice may lead to important discoveries about the social interaction deficits seen in many human psychosocial disorders, including autism, schizophrenia, depression and addiction, the researchers say. For example, nonverbal social cues are frequently used to identify early signs of autism in very young children.

"The core of empathy is being able to have an emotional experience and share that experience with another," says UW-Madison graduate student Jules Panksepp, who led the work along with undergraduate QiLiang Chen. "We are basically trying to deconstruct empathy into smaller functional units that make it more accessible to biological research."

Animal models of complex social behaviors such as empathy should bring the field closer to understanding what causes social interaction deficits and how they may be treated. "Deficits in empathy are frequently discussed in the context of psychiatric disorders like autism. We think that by coming up with a simplified model of it in a mouse, we're probably getting closer to modeling symptoms of human disorders," Panksepp says.

In the experiments, one mouse observed as another mouse was placed in a test chamber and trained to associate a 30-second tone with a mild foot shock. Upon experiencing the shock, the test mouse emitted a short distress call or squeak.

Though having no direct knowledge of the foot shock, observers from a very social mouse strain learned from the distress calls to associate the test chamber and tone with something negative. When later placed in the test chamber and presented with the tone, they exhibited clear physiological signs of aversion, such as freezing in place, even though no shock was delivered.

In contrast, observer mice from a less gregarious strain — less likely to seek the company of other mice — showed no response to the tone when they were placed in the test chamber.

"The question is, can the mouse identify the emotions of another animal as a predictor of environmental cues?" says Garet Lahvis, a professor of behavioral neuroscience at OHSU. "The social strain learned from the distressed mouse that the tone predicted distress. The nonsocial strain couldn't make that [association]."

The differences exhibited by the two strains show that there is a genetic component to the ability to perceive and act based on another's emotional state, the researchers say. Future studies will focus on the genetic differences between the mouse strains to try to identify some of the specific genes that may be involved.

While it may come as no surprise to pet owners or those who work with animals that animals are able to pick up on the emotional states of those around them, this type of effect has not been rigorously demonstrated in a scientific context, the researchers say.

"Mice are capable of a more complex form of empathy than we ever believed possible," says Lahvis. "We believe there's a genetic contribution to the ability for empathy that has broad implications for autism research and other psychosocial disorders."

Jules Panksepp | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>