Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model reveals a mystery of Duchenne muscular dystrophy, Stanford scientists say

08.07.2013
Children with Duchenne muscular dystrophy often die as young adults from heart and breathing complications. However, scientists have been puzzled for decades by the fact that laboratory mice bearing the same genetic mutation responsible for the disease in humans display only mild symptoms and no cardiac involvement.

Now, researchers at the Stanford University School of Medicine have developed a mouse model that accurately mimics the course of the disease in humans. The study is the first to demonstrate a molecular basis for the cardiac defect that is the primary killer of people with Duchenne muscular dystrophy.

Furthermore, the study provides evidence for a potential treatment to help prolong heart function. The mouse model also will allow researchers and clinicians to test a variety of therapies for the inherited condition.

"Until now, scientists had no animal model of Duchenne muscular dystrophy that manifests the symptoms of the cardiac disease that kills children and young adults with the condition," said Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor at Stanford and director of the Baxter Laboratory for Stem Cell Biology. "This has been a conundrum for three decades. We found that mice with moderately shortened telomeres and the Duchenne mutation exhibit profound cardiac defects and die at a young age, just like human patients."

Blau, who is also a member of the Stanford University Institute for Stem Cell Biology and Regenerative Medicine and a professor of microbiology and immunology, is the senior author of the study, which will be published July 7 in Nature Cell Biology. Foteini Mourkioti, PhD, an instructor at the Baxter Laboratory, is the lead author of the study.

The investigators found that the reason humans suffer more serious symptoms than mice has to do with the length of the protective caps, called telomeres, on the ends of chromosomes: Mice have telomeres about 40 kilobases in length, while human telomeres range from around 5 to 15 kilobases (a kilobase is 1,000 nucleotides). When the investigators introduced a second mutation in the animals that reduced telomere length to more closely match that of humans, the animals began to display the typical symptoms of the disease, including progressive muscle weakness, enlarged hearts and significantly shortened life spans.

Duchenne muscular dystrophy is the most prevalent form of the heritable muscular dystrophies. It is caused by mutations in the dystrophin gene that inhibit the production of the dystrophin protein, which connects the inside of the muscle cell to the outside matrix. The new mouse model showed that, in the absence of the dystrophin protein, the animals' heart muscle cells accumulate stress and damage due to repetitive contraction. Early treatment of a small group of animals with antioxidants protected their heart function and prolonged their lives.

Interestingly, cells in the animals from tissues that normally express dystrophin had telomeres much shorter than those in other tissues in the body that don't rely on the protein. This discovery indicates that the lack of the protein further exacerbates telomere shrinking — a fact borne out when the researchers compared affected mice and humans.

"Telomeres in heart muscle cells from four young men who had died of Duchenne muscular dystrophy were about half the length of control samples," Mourkioti said. "They are greatly shortened."

In the context of shortened telomeres, the dystrophin mutation in the mice leads to significant impairment of cardiac function. "Essentially, the heart cannot contract well," said Mourkioti, who performed a variety of functional and imaging tests, including electrocardiograms, echocardiography and MRIs, on mice in the study. When she looked at the heart muscle cells, or cardiomyocytes, of animals with the two mutations, she found damage to the cells' energy generators, or mitochondria, along with several signs of oxidative stress. (Oxidative stress is caused by byproducts of mitochondrial metabolism known as reactive oxygen species, which damage DNA.)

To test their theory, Blau and Mourkioti treated affected animals with two different antioxidants to neutralize the reactive oxygen species — one provided in the animals' diet and another injected into the abdomen. In each of the two groups, the 10 treated animals exhibited improvements in heart function and life span when compared to 10 control animals.

"We began the treatment when the animals were 8 weeks old, before they had begun to develop cardiac symptoms of the disorder," Blau said. "But it may be that treatment even earlier would have an even more marked effect."

Although very encouraging, researchers caution that further studies are required to determine the effect of early antioxidant treatment on patients with Duchenne muscular dystrophy.

"The important thing is that we finally have a mouse model with which we can begin testing a number of potential therapies," Blau said. "Until now, no one really understood the cardiac basis of the disease, and clinicians have been prescribing nonspecific treatments. Now we can develop more specific drugs for patients that target the cause of their cardiac dysfunction."

The new mouse model may also be applicable to the study of other inherited conditions.

"Seeing this in the heart gave us new insight," said Blau. "It's possible that the effect of shortened telomeres may be relevant to diseases other than that caused by Duchenne muscular dystrophy. Many mouse models that now fail to recapitulate human diseases may be improved by similar shortening of telomeres."

Other Stanford authors of the study include research assistant Jackie Kustan; research assistant and Blau lab manager Peggy Kraft; John Day, MD, PhD, professor of neurology and pediatrics; Ming-Ming Zhao, MD; and Daniel Bernstein, MD, professor of pediatrics and cardiology.

The work was supported by the American Heart Association, the National Institutes of Health (AR057220, R01CA84628, HL061535, P50CA058236, HL096113, HL100397, AG020961 and AG009521), the NIH SPORE in Prostate Cancer, the Robert A. and Renee E. Belfer Foundation, the Muscular Dystrophy Association and the Baxter Foundation.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Krista Conger (650) 725-5371 (kristac@stanford.edu)
Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>