Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse genome sequences reveal variability, complex evolutionary history

16.09.2011
The genome of even a single organism is packed with information. A new paper, building on recent advances in sequencing capability, now reports the complete genomes of 17 different strains of mice, creating an unparalleled genetic resource that will aid studies ranging from human disease to evolution.

An international team of researchers, including University of Wisconsin-Madison geneticist Bret Payseur, describe in the Sept. 14 issue of the journal Nature the genome sequencing and comparison of 17 mouse strains, including several of the most common laboratory strains and four recently derived from wild populations. The resulting database, the largest for any vertebrate model organism, documents the range of genetic variation between mouse strains and its effects on phenotypes and gene regulation.

"Mice are the premier model organism for human disease. We've made a lot of progress in understanding the genetics of common human diseases by studying mice," says Payseur, an associate professor of medical genetics in the UW-Madison School of Medicine and Public Health. "Although we've been able to map genomic regions that contribute to disease risk, we haven't known the full spectrum of mutations involved."

The new genetic compendium will help researchers more quickly find the subset of sequence differences responsible for disease and other characters, he adds. The new paper identifies mutations associated with more than 700 biological traits, including diabetes and heart disease.

"We are living in an era where we have thousands of human genomes at our fingertips," says David Adams from the Wellcome Trust Sanger Institute, who led the project. "The mouse, and the genome sequences we have generated, will play a critical role in understanding of how genetic variation contributes to disease and will lead us towards new therapies."

In addition to advancing the use of mice as a model for human disease, Payseur says the work also advances studies of evolution, his key interest. "We were interested in the history of mice — how did mice evolve and come to be such an important organism for research?" he asks.

He and graduate student Michael White probed the evolutionary history of the lab mouse using sequences of four wild-derived mouse strains, including three common subspecies of house mice and a more distant relative. These strains represent a few million years of evolution, offering a window into the processes that drive genetic and phenotypic change.

They found that the mouse genomes do not reflect a single evolutionary story. Rather, different parts of the genome showed different patterns of relatedness. For the three wild house mouse subspecies in this study, Payseur and White found that nearly 40 percent of the sequence supported one evolutionary relationship, another 30 percent supported another and the remaining 30 percent of the DNA suggested yet a third relationship.

The complexity uncovered here should serve as a cautionary tale for studies of evolutionary relationships between organisms, which have often made inferences based on one or a few genes, Payseur says. "If you're looking at closely related species, don't expect to infer the species history just by looking at a handful of regions. You really have to look at a large fraction of the whole genome."

Payseur hopes to conduct similar analyses of the other sequenced laboratory strains to begin to fill in the large gaps in existing lab mouse pedigrees. Understanding the evolution of the lab mouse will provide important genetic context for mouse studies of human disease and help other researchers choose the strain most appropriate for their research questions.

This genomic-sequencing project was supported by The Medical Research Council, U.K., and the Wellcome Trust. Payseur's work was supported by the U.S. National Science Foundation.

Bret Payseur | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>