Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse genome sequences reveal variability, complex evolutionary history

16.09.2011
The genome of even a single organism is packed with information. A new paper, building on recent advances in sequencing capability, now reports the complete genomes of 17 different strains of mice, creating an unparalleled genetic resource that will aid studies ranging from human disease to evolution.

An international team of researchers, including University of Wisconsin-Madison geneticist Bret Payseur, describe in the Sept. 14 issue of the journal Nature the genome sequencing and comparison of 17 mouse strains, including several of the most common laboratory strains and four recently derived from wild populations. The resulting database, the largest for any vertebrate model organism, documents the range of genetic variation between mouse strains and its effects on phenotypes and gene regulation.

"Mice are the premier model organism for human disease. We've made a lot of progress in understanding the genetics of common human diseases by studying mice," says Payseur, an associate professor of medical genetics in the UW-Madison School of Medicine and Public Health. "Although we've been able to map genomic regions that contribute to disease risk, we haven't known the full spectrum of mutations involved."

The new genetic compendium will help researchers more quickly find the subset of sequence differences responsible for disease and other characters, he adds. The new paper identifies mutations associated with more than 700 biological traits, including diabetes and heart disease.

"We are living in an era where we have thousands of human genomes at our fingertips," says David Adams from the Wellcome Trust Sanger Institute, who led the project. "The mouse, and the genome sequences we have generated, will play a critical role in understanding of how genetic variation contributes to disease and will lead us towards new therapies."

In addition to advancing the use of mice as a model for human disease, Payseur says the work also advances studies of evolution, his key interest. "We were interested in the history of mice — how did mice evolve and come to be such an important organism for research?" he asks.

He and graduate student Michael White probed the evolutionary history of the lab mouse using sequences of four wild-derived mouse strains, including three common subspecies of house mice and a more distant relative. These strains represent a few million years of evolution, offering a window into the processes that drive genetic and phenotypic change.

They found that the mouse genomes do not reflect a single evolutionary story. Rather, different parts of the genome showed different patterns of relatedness. For the three wild house mouse subspecies in this study, Payseur and White found that nearly 40 percent of the sequence supported one evolutionary relationship, another 30 percent supported another and the remaining 30 percent of the DNA suggested yet a third relationship.

The complexity uncovered here should serve as a cautionary tale for studies of evolutionary relationships between organisms, which have often made inferences based on one or a few genes, Payseur says. "If you're looking at closely related species, don't expect to infer the species history just by looking at a handful of regions. You really have to look at a large fraction of the whole genome."

Payseur hopes to conduct similar analyses of the other sequenced laboratory strains to begin to fill in the large gaps in existing lab mouse pedigrees. Understanding the evolution of the lab mouse will provide important genetic context for mouse studies of human disease and help other researchers choose the strain most appropriate for their research questions.

This genomic-sequencing project was supported by The Medical Research Council, U.K., and the Wellcome Trust. Payseur's work was supported by the U.S. National Science Foundation.

Bret Payseur | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>