Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule Tracking Reveals Mechanism of Chromosome Separation in Dividing Cells

09.03.2009
Researchers are looking at a control hub on chromosomes that forms during cell division. They are learning how it attaches and maintains its grip to the cellular fiber that lengthen and shorten to separate chromosomes.

University of Washington (UW) researchers are helping to write the operating manual for the nano-scale machine that separates chromosomes before cell division. The apparatus is called a spindle because it looks like a tiny wool-spinner with thin strands of microtubules or spindle fibers sticking out. The lengthening and shortening of microtubules is thought to help push and pull apart chromosome pairs.

Understanding how this machine accurately and evenly divides genetic material is essential to learning why its parts sometimes fail. Certain cancers or birth defects, like Down syndrome or Trisomy 18, result from an uneven distribution of chromosomes.

In a study published March 6 in the journal Cell, a team led by UW scientists reports on the workings of a key component of this machine. Named a kinetochore, it is a site on each chromosome that mechanically couples to spindle fibers.

"Kineochores are also regulatory hubs," the researchers noted. "They control chromosome movements through the lengthening and shortening of the attached microtubules. They sense and correct errors in attachment. They emit a "wait" signal until the microtubules properly attach." Careful control over microtubules, they added, is vital for accurate splitting of the chromosomes.

The lead researchers on the study were Andrew F. Powers and Andrew D. Franck from the UW Department of Physiology and Biophysics and Daniel R. Gestaut, from the UW Department of Biochemistry. The senior authors of the study were Charles "Chip" Asbury, assistant professor, and Linda Wordeman, associate professor, both of physiology and biophysics and both members of the UW Center for Cell Dynamics; and Trisha Davis, professor of biochemistry, and director of the Yeast Resource Center.

Asbury is known for research on molecular machines and motors, Wordeman for work on chromosome movement, and Davis for studies of spindle poles. All are part of the Seattle Mitosis Club led by Sue Biggins at the Fred Hutchinson Cancer Research Center.

To understand how the kinetochore functions, the scientists sought to uncover the basis for its most fundamental behavior: attaching microtubules. The most puzzling aspect of this attachment, according to the researchers, is that the kinetochore has to be strong yet dynamic. It has to keep a grip on the microtubule filaments even as they add and remove their subunits.

"This ability," the researchers said, "allows the kinetochore to harness microtubule shortening and lengthening to drive the movement of chromosomes."

The same coupling behavior is found in living things from yeast cells to humans, indicating that it was conserved during evolution as a good way of getting the job done.

The question is how this mechanism works. Previous studies implicated a large, multiprotein complex, Ndc80, as a direct contact point between kinetochores and microtubules. However, researchers had only a static view of the complex. The UW researchers used special techniques to manipulate and track the activity of the complex in a laboratory set-up.

The researchers were able to show that the Ndc80 complex was indeed capable of forming dynamic, load-bearing attachments to the tips of the microtubules, probably by forming an array of individually weak microtubule binding elements that rapidly bind and unbind, but with a total energy large enough to hold on. The mechanism will produce a molecular friction that resists translocation of the microtubule through the attachment site. Other scientists have dubbed the mechanism a "slip clutch."

This kind of coupler, the researchers added, is able to remain continuously attached to the microtubule tip during both its assembly and disassembly phases. The coupler also can harness the energy released during disassembly to produce mechanical force. Coupling may depend on positively charged areas on the complex that interact with negatively charged hooks on the microtubules by electrostatic force.

Based on their findings, the scientists propose arrays of Ndc80 complexes supply the combination of plasticity and strength that allows kinetechores to hold on loosely but not let go of the tips of the microtubules.

This work was supported by grants from the National Institutes of Health and the National Institute of General Medical Sciences, a Searle Scholar Award, and a Packard Fellowship for Science and Engineering.

Leila Gray | Newswise Science News
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>