Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular fossil

15.11.2010
Crystal structure shows how RNA, one of biology's oldest catalysts, is made

In today's world of sophisticated organisms proteins are the stars. They are the indispensible catalytic workhorses, carrying out the processes essential to life. But long, long ago ribonucleic acid (RNA) reigned supreme.

Now Northwestern University researchers have produced an atomic picture that shows how two of these very old molecules interact with each other. It is a rare glimpse of the transition from an ancient, RNA-based world to our present, protein-catalyst dominated world.

The scientists are the first to show the atomic details of how ribonuclease P (RNase P) recognizes, binds and cleaves transfer RNA (tRNA). They used the powerful X-rays produced by the Advanced Photon Source at Argonne National Laboratory to obtain images from crystals formed by these two RNA molecules. The result is a snapshot of one of the most complex models of a catalytic RNA and its target.

Details of the structure will be published Nov. 14 by the journal Nature.

"RNA is an ancient molecule, but it is pretty sophisticated," said Alfonso Mondragón, professor of molecular biosciences in the Weinberg College of Arts and Sciences. He led the research. "Our crystal structure shows that it has many of the properties we ascribe to modern molecules. RNA is a catalyst that has much of the versatility and complexity of modern-day proteins."

For billions of years and still to this day, the function of RNase P -- found in nearly all organisms, from bacteria to humans -- has been to cleave transfer tRNA. If the tRNA is not cleaved, it is not useful to the cell.

"We knew this important chemistry happened, that RNA acts as a catalyst, but we didn't know exactly how until now," Mondragón said. "We now have a better understanding of how RNA works."

RNase P is formed by a large RNA core plus a small protein, illustrating the evolutionary shift from an RNA world toward a protein-dominated world. The protein helps recognize the tRNA, but most of the recognition occurs through RNA-RNA interactions involving shape complementarity and also base pairing.

The structure shows that once RNase P recognizes tRNA, it docks and, assisted by metal ions, cuts one chemical bond. This matures the tRNA, producing a smaller RNA molecule that now can contribute to fundamental processes in the cell. The RNA-based enzyme does this over and over, cutting each tRNA in exactly the same place every time.

"The discovery nearly 30 years ago that RNA molecules can have a catalytic function raised the idea that maybe RNA was the first molecule," Mondragón said. "Our work reinforces this notion of the existence of an RNA world when life first began."

The title of the Nature paper is "Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA." In addition to Mondragón, other authors of the paper are Nicholas J. Reiter, Amy Osterman, Alfredo Torres-Larios and Kerren K. Swinger, of Northwestern, and Tao Pan, of the University of Chicago.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>