Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular circuit uncovered governing key cell-fate decisions

09.06.2010
Critical missing links in a signaling-transcription cascade responsible for pivotal cell-fate decisions have been described for the first time in a paper in Cell.

Critical missing links in a signaling-transcription cascade responsible for pivotal cell-fate decisions have been described for the first time in a paper in Cell. Identified through a combination of simulations and experiments, the links are part of circuit-like molecular control mechanisms for converting analog signals into binary responses central to the development of all cells.

The question of how identical cells develop into distinct cell types using the same signaling pathways is integral to our understanding of the cell life cycle. The mechanisms that determine cell fate decisions, leading cells with the same genes to distinct developmental outcomes, remain however poorly understood.

To study cell fate decisions, a research team headed by scientists at the RIKEN Research Center for Allergy and Immunology (RCAI) and the University College Dublin administered growth factors to MCF-7 breast cancer cells and analyzed responses in the extracellular regulated kinase 1/2 (ERK) cascade. Whereas one growth factor (epidermal growth factor or EGF) induces transient ERK activity leading to cell proliferation, the other (heregulin or HRG) induces ERK activity that is sustained, triggering cell differentiation. Connecting these analog ERK signaling patterns to their cell fates (proliferation/differentiation) is the phosphorylated transcription factor c-Fos, whose digital all-or-none expression acts as the output of the signaling system.

Comparing observational data with results of mathematical simulations, the researchers arrived at a “molecular circuit” model for c-Fos mediated cell differentiation composed of negative feedback loops, feed-forward loops and logical AND gates that reduce noise and generate stable output signals. The discovery of these simple circuit components, which are believed to govern differentiation across a variety of different cell types, provides fundamental insights into the underlying logic of cell-fate decision processes, opening the door to applications in areas such as regenerative medicine.

For more information, please contact:

Dr. Mariko Okada-Hatakeyama
Laboratory for Cellular Systems Modeling
RIKEN Research Center for Allergy and Immunology (RCAI)
Tel: +81-(0)45-503-9104 / Fax: +81-(0)45-503-9613
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Allergy Immunology Molecular Target RCAI cell death cell type signaling pathway

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>