Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular circuit uncovered governing key cell-fate decisions

09.06.2010
Critical missing links in a signaling-transcription cascade responsible for pivotal cell-fate decisions have been described for the first time in a paper in Cell.

Critical missing links in a signaling-transcription cascade responsible for pivotal cell-fate decisions have been described for the first time in a paper in Cell. Identified through a combination of simulations and experiments, the links are part of circuit-like molecular control mechanisms for converting analog signals into binary responses central to the development of all cells.

The question of how identical cells develop into distinct cell types using the same signaling pathways is integral to our understanding of the cell life cycle. The mechanisms that determine cell fate decisions, leading cells with the same genes to distinct developmental outcomes, remain however poorly understood.

To study cell fate decisions, a research team headed by scientists at the RIKEN Research Center for Allergy and Immunology (RCAI) and the University College Dublin administered growth factors to MCF-7 breast cancer cells and analyzed responses in the extracellular regulated kinase 1/2 (ERK) cascade. Whereas one growth factor (epidermal growth factor or EGF) induces transient ERK activity leading to cell proliferation, the other (heregulin or HRG) induces ERK activity that is sustained, triggering cell differentiation. Connecting these analog ERK signaling patterns to their cell fates (proliferation/differentiation) is the phosphorylated transcription factor c-Fos, whose digital all-or-none expression acts as the output of the signaling system.

Comparing observational data with results of mathematical simulations, the researchers arrived at a “molecular circuit” model for c-Fos mediated cell differentiation composed of negative feedback loops, feed-forward loops and logical AND gates that reduce noise and generate stable output signals. The discovery of these simple circuit components, which are believed to govern differentiation across a variety of different cell types, provides fundamental insights into the underlying logic of cell-fate decision processes, opening the door to applications in areas such as regenerative medicine.

For more information, please contact:

Dr. Mariko Okada-Hatakeyama
Laboratory for Cellular Systems Modeling
RIKEN Research Center for Allergy and Immunology (RCAI)
Tel: +81-(0)45-503-9104 / Fax: +81-(0)45-503-9613
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Allergy Immunology Molecular Target RCAI cell death cell type signaling pathway

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>