Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mockingbirds in fickle climates sing fancier tunes

Why are some birds simple singers and others vocal virtuosos? Researchers at the National Evolutionary Synthesis Center (NESCent), the Cornell Lab of Ornithology, and McGill University suspect that inconsistent climates may play a role.

A large-scale study of mockingbirds in diverse habitats reveals that species in more variable climes also sing more complex tunes. "As environments become more variable or unpredictable, song displays become more elaborate," said Carlos Botero, a postdoctoral researcher at NESCent in Durham, NC. NESCent is an NSF-funded collaborative research center operated by Duke University, the University of North Carolina at Chapel Hill, and North Carolina State University.

Local climate patterns are good indicators of how challenging life is in a given location, Botero said. "Survival and reproduction become more complicated when weather patterns are unpredictable because you don't know when food will be available or how long it will be around," he explains. What's more, the consequences of picking a mediocre mate are magnified in harsher climes.

"In really difficult or demanding environments you would expect females to be choosier," he said.

Male mockingbirds sing primarily to impress mates, said Botero. Superior singing skills are a cue that a male is a good catch. "Complexity of song display – how many song types a bird sings, how hard the songs are − is a good predictor of the quality of the individual," said Botero. "Males that sing more complex songs tend to carry fewer parasites, and have offspring that are more likely to survive."

Songbirds aren't born knowing their songs, however: they have to learn them over time. Since birdsong is a learned behavior, Botero and colleagues suspect that song-learning ability may also be a display of learning ability in general. The bird equivalent of sparkling conversation, complex songs may indicate which males have not only brawn, but also brainpower. "Birds that sing better are telling others, at least indirectly: Hey, I'm a good learner," said Botero.

More importantly, singing skills may be a sign that males are clever enough to cope with iffy environments. "Individuals that are more intelligent tend to be better able to compensate for the difficulties of unpredictable climates. For example, if some individuals are able to invent new foraging techniques, then they are going to be better at surviving harsh winters than the poor guys who only know one way to forage," Botero said. "The more intelligent you are, the more resourceful you are, and the more curve balls you're able to handle."

To see if there was a correlation between climate and song, Botero searched sound archives around the world and embarked on a solo tour of the southern hemisphere to record bird songs in the wild. Armed with supersensitive recording equipment, Botero trekked his way through desert, jungle, scree and scrub in search of mockingbirds in song. Botero's recordings − nearly 100 tracks from 29 mockingbird species − will enhance pre-existing sound archives by filling in gaps for species for which high-quality recordings weren't previously available.

Back in the States, Botero used computer programs to convert each sound recording − a medley of whistles, warbles, trills and twitters − into a sonogram, or sound graph. Like a musical score, the complex pattern of lines and streaks in a sonogram enables scientists to see and visually analyze sound.

Botero and colleagues then painstakingly analyzed each snippet of song and compared their patterns to a database of temperature and precipitation records. The researchers found that species subject to more variable and unpredictable climates had more elaborate song displays.

The connection between birdsong and climate is new and somewhat surprising, Botero explains. "We're connecting two dots that were far away before."

For Botero and his colleagues, the next step is to see whether this pattern holds true for other animals. By studying animal communication, Botero ultimately hopes to shed light on how language evolved in humans. "You can't help but wonder what is it about humans that made our vocal communication so incredibly complicated compared to other animals," Botero said.

"It has long been hypothesized that one reason why humans have such exaggerated displays – not just language, but music, art, and even math – is because females have selected for signals of intelligence," explains Botero.

"What we have now is a nice arena – outside of humans − where we can test these ideas and start understanding processes that are fundamentally important for our own species."

The team's findings were published online in the May 21 issue of the journal Current Biology.

Robin Smith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>