Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing Link to Cloud Formation Found

12.08.2009
New chemical research shows how cloud seedlings form over forested areas.

The discovery of an unknown hitherto chemical compound in the atmosphere may help to explain how and when clouds are formed. The discovery of the so called dihydroxyepoxides (an aerosol-precursor), is reported in this week's issue of Science by a team comprising of researchers from the California Institute of Technology (Caltech) and the University of Copenhagen (UoC).

Professor Henrik Kjærgaard from the Department of Chemistry at the UoC calls the new compounds a missing link in the formation of clouds.

- "We know that aerosols are important in the formation of clouds but, we didn't know much about how the aerosols themselves were formed. This new compound may be just what we were looking for," says the professor who has recently moved from University of Otago, New Zealand to fill his new appointment in Copenhagen. The new compound was originally found when a team of researchers from Caltech mounted a measuring device known as a Chemical Ionization Mass Spectrometer (CIMS) on an aeroplane, and flew it over the oaken forests of Northern America.

Maple Clouds
Next to methane, deciduous plants and trees such as oak and maple, are known to be the largest source of hydrocarbons in the atmosphere; an important factor in climate-change. As a result, the researchers went into the lab to calculate what occurs to the tree-released hydrocarbon known as isoprene, when it meets other compounds in the atmosphere. Based on previous research, isoprene was expected to break down into smaller molecules. But previous research was done with air found over cities, where levels of the combustion by-product NOx are very high. And the chemicals formed when isoprene interacts with NOx do not easily form aerosols. However, when subjected to air as found over pristine stretches of forest, the fate of the tree-released hydrocarbons turned out to be a very different one. Without the NOx to skew the process, isoprene unexpectedly degraded into the new compound: dihydroxyepoxide. This new compound appears to be extremely reactive and likely to form aerosols.
Clouds: Central to Climate Studies
The study detailed in this week's issue of Science, reports the laboratory measurement of the isoprene degradation by hydroxyl radicals "the vacuum cleaner of the atmosphere". The detection of these epoxides as a significant final product in the isoprene breakdown was supported by isotope and theoretical studies, and corroborated the field measurements. The theoretical studies from Kjaergaar's group at the University of Otago, improved the CIMS technique and supported the chemical degradation mechanisms proposed. Discovering a new and unexpected atmospheric compound in the air over forests is fundamental research. Nevertheless, with manmade climate-change looming on the horizon, the research might find applications sooner that expected. The new aerosol-precursor may be extremely important when researchers attempt to compute projected climate change.

- "That means, that the new compound is a missing link in more that one sense", Professor Kjærgaard states. "Clouds can retain as well as block the heat of the sun, so, if we don't understand what drives the formation of clouds, our climate-models are bound to be less than exact".

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>