Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing Link to Cloud Formation Found

12.08.2009
New chemical research shows how cloud seedlings form over forested areas.

The discovery of an unknown hitherto chemical compound in the atmosphere may help to explain how and when clouds are formed. The discovery of the so called dihydroxyepoxides (an aerosol-precursor), is reported in this week's issue of Science by a team comprising of researchers from the California Institute of Technology (Caltech) and the University of Copenhagen (UoC).

Professor Henrik Kjærgaard from the Department of Chemistry at the UoC calls the new compounds a missing link in the formation of clouds.

- "We know that aerosols are important in the formation of clouds but, we didn't know much about how the aerosols themselves were formed. This new compound may be just what we were looking for," says the professor who has recently moved from University of Otago, New Zealand to fill his new appointment in Copenhagen. The new compound was originally found when a team of researchers from Caltech mounted a measuring device known as a Chemical Ionization Mass Spectrometer (CIMS) on an aeroplane, and flew it over the oaken forests of Northern America.

Maple Clouds
Next to methane, deciduous plants and trees such as oak and maple, are known to be the largest source of hydrocarbons in the atmosphere; an important factor in climate-change. As a result, the researchers went into the lab to calculate what occurs to the tree-released hydrocarbon known as isoprene, when it meets other compounds in the atmosphere. Based on previous research, isoprene was expected to break down into smaller molecules. But previous research was done with air found over cities, where levels of the combustion by-product NOx are very high. And the chemicals formed when isoprene interacts with NOx do not easily form aerosols. However, when subjected to air as found over pristine stretches of forest, the fate of the tree-released hydrocarbons turned out to be a very different one. Without the NOx to skew the process, isoprene unexpectedly degraded into the new compound: dihydroxyepoxide. This new compound appears to be extremely reactive and likely to form aerosols.
Clouds: Central to Climate Studies
The study detailed in this week's issue of Science, reports the laboratory measurement of the isoprene degradation by hydroxyl radicals "the vacuum cleaner of the atmosphere". The detection of these epoxides as a significant final product in the isoprene breakdown was supported by isotope and theoretical studies, and corroborated the field measurements. The theoretical studies from Kjaergaar's group at the University of Otago, improved the CIMS technique and supported the chemical degradation mechanisms proposed. Discovering a new and unexpected atmospheric compound in the air over forests is fundamental research. Nevertheless, with manmade climate-change looming on the horizon, the research might find applications sooner that expected. The new aerosol-precursor may be extremely important when researchers attempt to compute projected climate change.

- "That means, that the new compound is a missing link in more that one sense", Professor Kjærgaard states. "Clouds can retain as well as block the heat of the sun, so, if we don't understand what drives the formation of clouds, our climate-models are bound to be less than exact".

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>