Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microscopic Firewalls

Robust foils of synthetic nacre analogues act as a heat shield

Biological materials are fascinating because they are very light but have the ability to withstand extreme forces. Nacre is amazingly tough thanks to a multi-layer arrangement of platelet-shaped calcium carbonate crystals (“bricks”) and proteins (“mortar”) in the form of a “brick wall”.

A Finnish and Swedish team headed by Andreas Walther and Olli Ikkala has now developed a nacre analogue with mechanical properties that outperform those of some high-performance polymers. It also acts as a heat shield, as the scientists report in the journal Angewandte Chemie.

There is much interest in the imitation of robust biomaterials and their use in construction and coatings. “It has previously been very difficult to even get samples of significant size” says Ikkala, “production scale was completely out of the question.” The team from the University of Aalto (Helsinki) and the Royal Institute of Technology in Stockholm has recently developed a simple and fast production method that resembles paper production, is environmentally friendly and economical, and can be used for the production of whisper-thin foils, laminates, and coatings of nacre analogues. The films can be made as large as desired and demonstrate outstanding mechanical properties.

Like true nacre, the analogues have a brick-wall structure of “hard” and “soft” materials: The “bricks” consist of hard clay platelets that are coated with a soft polymer. The hard component acts as a supporting and strengthening member, while the soft segments is an efficient binder and can dissipate energy. Now there is a further improvement: the researchers coated the silicate platelets with polymer molecules that have multiple positive charges (polycations), instead of neutral polymers. By selecting the negatively charged counterions with the right properties, the mechanical properties of the highly transparent, pliable films can easily be varied, and improved. Increasing the charge increases the elasticity and tensile strength, because the adhesion between the polycation-coated platelets is stronger.

One other property of the new synthetic nacre analogues is particularly intriguing: when the materials are exposed to flame, the embedded polymer burns up to form a material with an interior of porous foam and an armored skin on the outside. This construction provides protection against heat and flames as effectively as a heat shield. “Our new material has potential as a fire-proof coating or as a component of fire- or heat-shielding films” says Walther. “Their light weight makes them particularly interesting for aerospace and marine applications.”

Author: Andreas Walther, Aalto University, Helsinki (Finland),

Title: Supramolecular Control of Stiffness and Strength in Lightweight High-Performance Nacre-Mimetic Paper with Fire-Shielding Properties

Angewandte Chemie International Edition 2010, 49, No. 36, 6448–6453, Permalink to the article:

Andreas Walther | Angewandte Chemie
Further information:

Further reports about: Angewandte Chemie Firewall Ikkala microscopic

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>