Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic Firewalls

18.08.2010
Robust foils of synthetic nacre analogues act as a heat shield

Biological materials are fascinating because they are very light but have the ability to withstand extreme forces. Nacre is amazingly tough thanks to a multi-layer arrangement of platelet-shaped calcium carbonate crystals (“bricks”) and proteins (“mortar”) in the form of a “brick wall”.

A Finnish and Swedish team headed by Andreas Walther and Olli Ikkala has now developed a nacre analogue with mechanical properties that outperform those of some high-performance polymers. It also acts as a heat shield, as the scientists report in the journal Angewandte Chemie.

There is much interest in the imitation of robust biomaterials and their use in construction and coatings. “It has previously been very difficult to even get samples of significant size” says Ikkala, “production scale was completely out of the question.” The team from the University of Aalto (Helsinki) and the Royal Institute of Technology in Stockholm has recently developed a simple and fast production method that resembles paper production, is environmentally friendly and economical, and can be used for the production of whisper-thin foils, laminates, and coatings of nacre analogues. The films can be made as large as desired and demonstrate outstanding mechanical properties.

Like true nacre, the analogues have a brick-wall structure of “hard” and “soft” materials: The “bricks” consist of hard clay platelets that are coated with a soft polymer. The hard component acts as a supporting and strengthening member, while the soft segments is an efficient binder and can dissipate energy. Now there is a further improvement: the researchers coated the silicate platelets with polymer molecules that have multiple positive charges (polycations), instead of neutral polymers. By selecting the negatively charged counterions with the right properties, the mechanical properties of the highly transparent, pliable films can easily be varied, and improved. Increasing the charge increases the elasticity and tensile strength, because the adhesion between the polycation-coated platelets is stronger.

One other property of the new synthetic nacre analogues is particularly intriguing: when the materials are exposed to flame, the embedded polymer burns up to form a material with an interior of porous foam and an armored skin on the outside. This construction provides protection against heat and flames as effectively as a heat shield. “Our new material has potential as a fire-proof coating or as a component of fire- or heat-shielding films” says Walther. “Their light weight makes them particularly interesting for aerospace and marine applications.”

Author: Andreas Walther, Aalto University, Helsinki (Finland), mailto:andreas.walther@tkk.fi

Title: Supramolecular Control of Stiffness and Strength in Lightweight High-Performance Nacre-Mimetic Paper with Fire-Shielding Properties

Angewandte Chemie International Edition 2010, 49, No. 36, 6448–6453, Permalink to the article: http://dx.doi.org/10.1002/anie.201001577

Andreas Walther | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201001577

Further reports about: Angewandte Chemie Firewall Ikkala microscopic

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>