Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics: Mixing through oscillations

11.09.2014

A tiny device produces oscillatory flows that enhance the mixing of viscous fluids for chemical reactions.

Devices that manipulate very small volumes of fluids are applied in diverse fields, including printer technology, DNA processing and cooling systems for electronics. For some processes involving fluids, such as mixing, it is useful to generate oscillating flows, but this can be difficult for particularly viscous fluids. Now, A*STAR researchers have developed a microfluidic oscillator that produces oscillations even in very viscous fluids[1].


Top (left) and side (right) views of the device. Fluid flow causes the diaphragm to undergo elastic oscillations, producing an oscillatory flow at the outlet.

Reproduced, with permission, from Ref.1 © 2013 AIP Publishing LLC

“In miniaturized fluidic devices, the viscous force of the fluid dominates the flow, and mixing becomes a challenging task,” says Huanming Xia from the A*STAR Singapore Institute of Manufacturing Technology (SIMTech), who led the study with co-workers at SIMTech and the A*STAR Institute of High Performance Computing. “The microfluidic oscillator is a part of our continuous effort to solve this problem.”

Microfluidic valves and pumps have diaphragms, which are usually made from soft materials, such as rubber, and are operated via external forces. Yet the tiny device, less than 4 millimeters in size, developed by Xia’s team does not need external control. Instead, when the diaphragm is placed in a fluid flow, it responds elastically by wiggling up and down to make the device oscillate automatically (see image). To adapt the design for use with very viscous fluids, the researchers replaced the rubber diaphragm with one made from copper and beryllium foil.

While this device has practical benefits, it also raises theoretical implications about the behavior of microfluidic oscillators. The team found that at low fluid pressures, the flow across the diaphragm does not oscillate. Then, above a particular transition pressure, the flow rate drops and oscillatory flow occurs, increasing in frequency as pressure increases. After performing experimental and theoretical tests for different device shapes, fluid viscosities and diaphragm thicknesses, Xia’s team could expand current theories.

“Flow-induced vibrations are usually related to flow instabilities and analyzed using a spring–mass model,” explains Xia. The transition from laminar flow to oscillatory flow in their new oscillator was counterintuitive, because increased pressure led to reduced flow rates. The team recognized that this behavior was similar to ‘negative differential resistance’ — a well-established concept that describes certain electric circuits in which an increased voltage leads to a lower current.

Xia’s team is currently developing a complete mathematical model of their device using negative resistance and other concepts ‘borrowed’ from electric circuit theory. This should assist them to optimize the device design for practical applications; for example, the enhanced mixing of viscous fluids enabled by the device can intensify and control chemical reactions.

Reference

1. Xia, H. M., Wang, Z. P., Nguyen, V. B., Ng, S. H., Wang, W. et al. Analyzing the transition pressure and viscosity limit of a hydroelastic microfluidic oscillator. Applied Physics Letters 104, 024101 (2014).

Associated links

Lee Swee Heng | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR SIMTech Science Xia diaphragm fluids materials microfluidic mixing oscillate oscillations oscillator rubber transition

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>