Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microchoreography: Researchers use synthetic molecule to guide cellular “dance”

06.12.2012
Johns Hopkins researchers have used a small synthetic molecule to stimulate cells to move and change shape, bypassing the cells’ usual way of sensing and responding to their environment. The experiment pioneers a new tool for studying cell movement, a phenomenon involved in everything from development to immunity to the spread of cancer.

“We were able to use synthetic molecules small enough to slip inside the cell and activate a chemical reaction controlling cell movement, bypassing most of the steps that usually lead up to this reaction,” says Andre Levchenko, Ph.D., a professor at the Johns Hopkins University School of Medicine’s Institute for Cell Engineering, whose lab collaborated with that of Takanari Inoue, also from the school of medicine, on the study.

“As a result, we came up with a new model to describe one of the more fundamental and important cellular processes and a better understanding of cell movements critical for cancer progression and immune response.” A report on the study was published Nov. 26 on the website of the Proceedings of the National Academy of Sciences.

Like bacteria wiggling through a drop of pond water, many types of human cells move too, including fibroblasts, which patrol the skin and make repairs; immune cells, which rush to the site of infections; and nerve cells, which must travel great distances during development, Levchenko says. Similarly, in order to metastasize or spread, a tumor’s cells must break off and migrate to a new part of the body.

Because of its role in cancer and immunity, these cellular dances are a hot area of research at present, Levchenko says. However, it is difficult to study the natural process for stimulating movement, in which signaling proteins bind to receptor molecules on the surface of the cell, setting off a complex chain reaction that ultimately propels the cell in a certain direction. In addition to the problem of complexity of the molecular interaction network, another difficulty is that cells decide which way to move by comparing the signal concentration on one side of the cell to the concentration on the other. “Stimulating a cell differently on one side than on the other side is not a trivial thing to do, because cells are incredibly small — about one-tenth the width of a human hair,” Levchenko explains.

To deal with the first problem, Benjamin Lin, a member of Levchenko’s team who led the study, joined forces with Inoue’s research group to take advantage of a novel method relying on a small molecule able to get between the fat molecules of the cell membrane and into the cell. Once inside, it would bind to two slightly modified proteins in the network that stimulates movement; the new complex of three molecules would in turn trigger the critical protein Rac, which falls somewhere in the middle of the choreographed chain reaction that leads to movement. By analyzing which enzymes in the chain reaction were ultimately activated by the synthetic molecule and which weren’t, the researchers could tell whether they were downstream or upstream of Rac in the chain.

To create a fine enough biochemical gradient of the synthetic molecule to guide a cell in a specific direction, the researchers built a silicone-based chip with tiny liquid-dispensing channels running along the surface. When they loaded the channels with a solution containing the synthetic molecule, and placed human cells on the surface, they could stimulate one side of a cell more than the other, and induce it to move. “Neither synthetic molecules nor microfluidic devices had been used before in this particular way, and the results exceeded all our expectations,” says Levchenko. “The cells responded very dramatically, moving in the direction we specified, and changing their shapes.”

In addition to providing researchers with powerful new tools for studying cell movement, the experiment is a step forward for the budding field of synthetic biology. “If a researcher decides to grow new tissue for transplantation, it could be useful to have a cue that enforces cell migration and assembly,” Levchenko says.

Other authors on the paper are Benjamin Lin, Tasuku Ueno, Ph.D., C. Joanne Wang, Ph.D., Andrew Harwell and Takanari Inoue, Ph.D., of Johns Hopkins; and William R. Holmes, Ph.D., and Leah Edelstein-Keshet, Ph.D., of the University of British Columbia.

This work was supported by the Natural Sciences and Engineering Research Council and by the National Institutes of Health’s National Institute of General Medical Sciences and National Cancer Institute (grant numbers GM092930, GM072024, GM084332, and CA15578).

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>