Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using microbes for the quick clean up of dirty oil

09.09.2009
Microbiologists from the University of Essex, UK have used microbes to break down and remove toxic compounds from crude oil and tar sands.

These acidic compounds persist in the environment, taking up to 10 years to break down. Mr Richard Johnson, presenting his PhD research to the Society for General Microbiology's meeting at Heriot-Watt University, Edinburgh, described how, by using mixed consortia of bacteria, they have achieved complete degradation of specific compounds in only a few days.

Tar sand deposits contain the world's largest supply of oil. With dwindling supplies of high quality light crude oil, oil producers are looking towards alternative oil supplies such as heavy crude oils and super heavy crudes like tar sands. However, the process of oil extraction and subsequent refining produces high concentrations of toxic by-products. The most toxic of these are a mixture of compounds known as naphthenic acids that are resistant to breakdown and persist as pollutants in the water used to extract the oils and tar. This water is contained in large settling or tailing ponds. The number and size of these settling ponds containing lethal amounts of naphthenic acids are growing daily – it is estimated that there is around one billion m3 of contaminated water in Athabasca, Canada, alone - and is still increasing. The safe exploitation of tar sand deposits depends on finding methods to clean up these pollutants.

"The chemical structures of the naphthenic acids we tested varied," said Mr Johnson, "Some had more side branches in their structure than others. The microbes could completely break down the varieties with few branches very quickly; however, other more complex naphthenic acids did not break down completely, with the breakdown products still present. We are now piecing together the degradation pathways involved which will allow us to develop more effective bioremediation approaches for removing naphthenic acids from the environment."

Dianne Stilwell | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>