Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma-promoting gene discovered

10.07.2012
Black skin cancer, also known as melanoma, is particularly aggressive and becoming increasingly common in Switzerland.

Despite intensive research, however, there is still no treatment. Researchers from the University of Zurich have now discovered a gene that plays a central role in black skin cancer. Suppressing this gene in mice inhibits the development of melanoma and its proliferation – a discovery that could pave the way for new forms of therapy.


The stem-cell factor Sox10 (red) is active in the tumor tissue of melanoma patients and essential for the development and spread of cancer.
Olga Shakhova

Until recently, it was assumed that a tumor was composed of many equivalent cells that all multiply malignantly and can thus contribute towards tumor growth. According to a more recent hypothesis, however, a tumor might also consist of malignant cancer stem cells and other less aggressive tumor cells. Normally, stem cells are responsible for the formation of organs.

Cancer stem cells can divide in a very similar way and develop into other tumor cells to form the tumor. Efficient tumor therapy thus primarily needs to fight cancer stem cells. Consequently, a team of stem-cell researchers from the University of Zurich headed by Professor Sommer decided to find out whether mechanisms that are important for normal stem cells also play a role in cancer stem cells.

Regulating gene discovered in tumor

Melanoma cells are rogue skin-pigment cells formed by so-called neural crest stem cells during embryonic development. Professor Sommer’s group teamed up with dermatologists and pathologists to investigate whether cells with characteristics of these specific stem cells are present in human tumor tissue.

“This was indeed the case, as we were able to prove based on numerous biopsies performed on melanoma patients,” says Sommer. In particular, one gene that effectively controls the stem-cell program was highly active in all the tumor tissue studied. This gene, which is known as “Sox10”, is essential for cell division and the survival of stem cells.

Gene suppression inhibits cancer

The next step for the Zurich researchers was to test how Sox10 works in human melanoma cells. They determined that the gene also controls a stem-cell program in cancer cells and is necessary for cell division. In order to corroborate these findings in a living organism, the researchers ultimately used a mouse which carried similar genetic mutations to those found in human melanoma and thus developed black skin cancer spontaneously. Astonishingly, the suppression of Sox10 in this animal model completely inhibited the formation and spread of cancer.

“Our research demonstrates that a tumor could probably be treated by attacking its stem cells,” concludes Sommer. The results also illustrate that such studies can primarily be successful through the close collaboration and conscious use of synergies between basic researchers and clinicians.

Further reading:

Olga Shakhova, Daniel Zingg, Simon M. Schaefer, Lisette Hari, Gianluca Civenni, Jacqueline Blunschi, Stéphanie Claudinot, Michal Okoniewski, Friedrich Beermann, Daniela Mihic-Probst, Holger Moch, Michael Wegner, Reinhard Dummer, Yann Barrandon, Paolo Cinelli, and Lukas Sommer. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nature Cell Biology. 8 July, 2012. Doi: 10.1038/ncb2535

Contact:

Professor Lukas Sommer
Institute of Anatomy
University of Zurich
Tel.: +41 44 635 53 50
Email: lukas.sommer@anatom.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>