Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the world by the brain

26.05.2011
Scientists identify circuits with which rats map the environment

For the first time, researchers at Humboldt Universität zu Berlin, Bernstein Center Berlin and NeuroCure Cluster of Excellence explain how the cellular architecture of spatial memory is related to its role in orientation. In the journal Neuron, they present a new technique with which they could examine the activity and interconnection of individual neurons in freely moving animals. This method allowed them to identify the circuits with which rats capture and learn the spatial structure of their environment.


The specific wiring of two distinct cell types is the basis of our spatial memory. Henrik Gerold Vogel/ pixelio.de

Yet, it is hardly understood, which cells in our brain communicate when with each other. So far, scientists had to choose: they either investigated structure and connectivity by staining the cells or they measured their activity. To capture both simultaneously was meant to be almost impossible, particularly in freely-moving animals.

Now, Prof. Michael Brecht, head of the Bernstein Center Berlin, and his colleague Dr. Andrea Burgalossi were able to solve these problems with a new method. In collaboration with micro-mechanics of the Technische Universität Berlin, they developed a novel stabilization mechanism for the recording electrode. This allowed them to label cells in the spatial memory system of the rat (the medial entorhinal cortex) and at the same time to record their activity in freely-moving animals exploring their environment. Anatomical analyses provided important information about the interconnections of the recorded cells. With this new method the scientists could visualize for the first time the neuronal circuits involved in spatial memory formation.

In the rat’s spatial memory system, two major cell types contribute to orientation and spatial memory formation. When rats explore an environment, a subset of cells are active at the intercept points of a virtual grid spanning the entire surface of the environment. These cells, known as “grid cells”, are believed to form a map-like representation of the environment which enables the animal to “measure” distances and to estimate its position in space. The other cell type is active only when the animal faces a certain direction. These cells seem to act like a compass for the animal.

How grid and head-direction cells cooperate for orientation and spatial learning was previously unknown. Michael Brecht and Andrea Burgalossi now noted that these two functional cell types are organized in well-defined anatomical patches, and they are strictly separated from each other. By visualizing the connections between the two cell types, the researchers could also reconstruct how they cooperate for the emergence of spatial memory.

Interestingly, they discovered very selective interconnections between the two systems of cells, which could enable the animal to integrate the spatial map information with the heading-direction information. These so-called “microcircuits” might therefore constitute the basic neural units for generating a global sense of spatial orientation. Alzheimer's disease has its origin in the medial entorhinal cortex. Patients often suffer, besides other things, from disorientation. Knowledge about the organization and the interconnections between cells in this region of the brain could therefore also contribute to a fundamental understanding of Alzheimer's disease.

The Bernstein Center Berlin is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

Original publication:
Burgalossi et al., Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex, Neuron (2011), doi:10.1016/j.neuron.2011.04.003
For further information please contact:
Prof. Dr. Michael Brecht
Michael.Brecht@bccn-berlin.de
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, 10115 Berlin
Tel: 030 2093-6770
Weitere Informationen:
http://www.bccn-berlin.de Bernstein Center Berlin for Computational Neuroscience
http://www.nncn.de National Bernstein Netwerk for Computational Neuroscience
http://www.hu-berlin.de Humboldt Universität zu Berlin
http://www.neurocure.de NeuroCure Cluster of Excellence

Johannes Faber | idw
Further information:
http://www.bccn-berlin.de

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>