Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Discover Molecule Responsible for Axonal Branching

21.09.2009
The human brain consists of about 100 billion (1011) neurons, which altogether form about 100 trillion (1014) synaptic connections with each other. A crucial mechanism for the generation of this complex wiring pattern is the formation of neuronal branches. The neurobiologists Dr. Hannes Schmidt and Professor Fritz G. Rathjen at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered a molecule that regulates this vital process. At the same time they have succeeded in elucidating the signaling cascade induced by this molecule (PNAS, Early Edition, 2009, doi:10.1073)*.

Through the ramification of its fiber-like axon, a single neuron can send branches and thus transmit information into several target areas at the same time. In principle, neurobiologists distinguish between two kinds of axonal branching: branching of the growth cone at the tip of an axon and the sprouting of collaterals (interstitial branching) from the axon shaft.

Both forms of axonal branching can be observed in sensory neurons, which transmit the sensation of touch, pain and temperature, among others. When the axons of these neurons reach the spinal cord, their growth cones first split (bifurcate) and consequently the axons divide into two branches growing in opposite directions. Later new branches sprout from the shaft of these daughter axons which penetrate the gray matter of the spinal cord.

Through investigations on sensory neurons, Dr. Hannes Schmidt and his colleagues were able to identify a protein which triggers the splitting of the growth cone of the sensory axons: the peptide CNP (the abbreviation stands for C-type natriuretic peptide). In transgenic mice the scientists were able to show that CNP is formed in the spinal cord precisely when sensory neurons grow into it. In the absence of CNP bifurcation can no longer occur which results in reduced neuronal connectivity in the spinal cord.

The new findings supplement earlier discoveries of the research group of Professor Rathjen according to which a cGMP-signaling cascade is responsible for the bifurcation of sensory axons. When CNP binds to its receptor Npr2 (natriuretic peptide receptor 2) on the surface of the axons, this signaling cascade is set in motion, which in turn induces the formation of the secondary messenger molecule cGMP. This messenger molecule then activates the protein kinase cGKI (cGMP-dependent protein kinase I), which can switch on and off a whole series of target proteins. The cytoskeleton of the neurons is thus altered in such a way that their growth cone splits into two daughter axons.

Next, the researchers want to identify these target proteins. Further analyses should clarify whether the cGMP signaling cascade likewise regulates the branching of other axon systems and whether this impacts the sensation of pain.

*C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons
Author affiliation: Hannes Schmidta, Agne Stonkutea, René Jüttnera, Doris Koeslingb, Andreas Friebeb,c, Fritz G. Rathjena
a Department of Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin
b Institute for Pharmacology and Toxicology, Ruhr University Bochum, D-44780 Bochum
c Present address: Institute for Physiology I, University of Würzburg, Röntgenring 9, D-97070 Würzburg

Correspondence to F.G. Rathjen: rathjen@mdc-berlin.de

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/en/research/research_teams/developmental_neurobiology/Projects/index.html

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>