Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MDC Researchers Develop New Tool to Investigate Ion Channels with Neurotoxins of Cone Snails and Spiders

Neurotoxins from cone snails and spiders help neurobiologists Sebastian Auer, Annika S. Stürzebecher and Dr. Ines Ibañez-Tallon of the Max Delbrück Center (MDC) Berlin-Buch, Germany, to investigate the function of ion channels in neurons.

Ion channels in the cell membrane enable cells to communicate with their environment and are therefore of vital importance. The researchers have developed a system which for the first time allows the targeted, long-lasting investigation of ion channel function in mammals and their blockade with neurotoxins. In transgenic mice they succeeded in blocking chronic pain by introducing a toxin gene into the organism (Nature Method, doi:10.1038/NMETH.1425).

There are approximately 500 species of cone snails, each producing 50 - 200 different conotoxins. A similar number of peptide toxins are produced by snakes, spiders, sea anemones, scorpions and other venomous animals. The animals use the neurotoxins to paralyze their prey.

Scientists estimate that more than 100,000 neurotoxins exist. They have become a topic of enormous research interest: Using neurotoxins researchers can target different ion channels, receptors and other signaling molecules and characterize their physiological function.

This kind of research can also give them insight into disease processes and eventually help them to find new therapies to eventually block hyperactive ion channels. For instance, a compound (Ziconotide) based on the toxin of a cone snail is already used to treat severe chronic pain in patients.

Dr. Ibañez-Tallon's research group is concentrating on two ion channels in the membrane of neurons which are activated by electric stimulation (action potential). Once activated, they allow the influx of calcium ions into the neuron, and the cell then releases chemicals (neurotransmitters), which send the signal to the next neuron.

During the last decades soluble neurotoxins have greatly helped in the characterization of ion channels and receptors because of their ability to specifically bind and inhibit these channels. However, soluble neurotoxins can only be applied for limited time, and their activity cannot be directed to specific cells.

Sebastian Auer, Annika S. Stürzebecher and Dr. Ibañez-Tallon managed to circumvent this problem with genetic engineering. Using lentiviruses they developed a shuttle to deliver the genes of cone snail and spider toxins into the neurons. The result: The neurons now long-lastingly produce toxins which directly bind to the calcium ion channels the researchers want to investigate. This was the first step - the targeted and long-lasting binding of the toxins to a specific ion channel in the cell culture.

Secondly, the researchers were able to demonstrate that with their tool they can also express toxin genes in animals in a targeted way and also lastingly characterize ion channels. In transgenic mice they were able to block certain calcium ion channels with their toxins and thus block chronic pain.

*Silencing neurotransmission with membrane-tethered toxins
Sebastian Auer1,4, Annika S Stürzebecher1,4, René Jüttner2, Julio Santos-Torres1, Christina Hanack1, Silke Frahm1, Beate Liehl1 & Inés Ibañez-Tallon1

1Molecular Neurobiology group and 2Developmental Neurobiology group, Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Present address: Novartis Pharma AG, Basel, Switzerland. 4These authors contributed equally to this work. Correspondence should be addressed to I.I.-T. (

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>