Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers develop editing toolkit for customizing zebrafish genomes

24.09.2012
Mayo Clinic researchers and an international team of scientists have developed a highly-efficient means of editing zebrafish genomes for research purposes, eliminating a bottleneck that has stymied biomedical scientists from using the fish as a model for human disease. The details appear online today in the journal Nature.

For many researchers, zebrafish are becoming the model of choice for genetic studies. However, the inability to efficiently target genetic modifications has delayed their use by some. The Mayo team used an improved variant of artificial transcription activator-like effector nucleases, or TALENs, to provide a new approach.

"By using genetic engineering tools called TALENs and synthetic DNA to make defined changes in the genomes of our fish, we are able to make small changes (just a few nucleotides) as well as add a specific sequence for biological gene switch applications," says Stephen Ekker, Ph.D., senior author and head of Mayo's zebrafish core facility. "This is the first time we've been able to make custom changes to the zebrafish genome."

Dr. Ekker says this toolkit opens the door to a range of new experiments in zebrafish, including modeling of human disease by introducing small point mutations, designing regulated gene alleles, and developing classical structure/function experiments using an animal model system.

This new approach has implications for other model systems, including mice, rats, flies and worms, and possible applications in stem cell research.

"To our knowledge, this TALEN toolkit also is the most active described to date," says Dr. Ekker. "This has important implications for the growing TALEN field, whether used in fish or any other cells. We used this higher activity for genome editing applications. We also used it to conduct a series of somatic gene function assessments, opening the door to an array of non-germline experiments in zebrafish."

Other authors include Victoria Bedell, Jarryd Campbell, Tanya Poshusta, Randall Krug, Sumedha Penheiter, Ph.D., Alvin Ma, Ph.D., and Karl Clark, Ph.D., all of Mayo Clinic; Ying Wang, Ph.D., and Jeffrey Essner, Ph.D., of Iowa State University; Colby Starker, Ph.D., Wenfang Tan, Ph.D., Scott Fahrenkrug, Ph.D., Daniel Carlson, Ph.D., and Daniel Voytas, Ph.D., all of the University of Minnesota; and Anskar Y. H. Leung, M.D., Ph.D., of Queen Mary Hospital, Hong Kong.

Support for the research came from the State of Minnesota, the National Institutes of Health, the National Science Foundation, the Research Grant Council of the University of Hong Kong and the Tang King Yin Research Fund.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit http://www.mayoclinic.org/about and www.mayoclinic.org/news.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>