Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Discover New Form of Cancer

11.06.2014

Potentially disfiguring facial tumor caused by chromosomal chimera

This is the story of two perfectly harmless genes. By themselves, PAX3 and MAML3 don’t cause any problems. However, when they combine during an abnormal but recurring chromosomal mismatch, they can be dangerous. The result is a chimera — a gene that is half of each — and that causes biphenotypic sinonasal sarcoma. The tumor usually begins in the nose and may infiltrate the rest of the face, requiring disfiguring surgery to save the individual. Because Mayo Clinic pathology researchers have now described the molecular makeup of the rare tumor, several existing cancer drugs may be targeted against it. The findings appear in the current issue of Nature Genetics.


In 2004, Mayo Clinic pathologists Andre Oliveira, M.D., Ph.D., and Jean Lewis, M.D., first noticed something unusual about a tumor sample they were analyzing under the microscope. By 2009, they had seen the same pathology several times and had begun collecting data. In 2012, they and a team of Mayo collaborators published their discovery and defined a new class of tumor not previously described.

Now, less than two years later, they are informing the medical community of the “nature of the beast” — the genetic structure and molecular signature of this seldom-recognized type of cancer, which seems to strike women 75 percent of the time. It is rare, but how rare no one knows as most of the cases they examined were initially diagnosed as various other types of cancer. They were able to first identify and then characterize it because Mayo Clinic is considered one of the world’s largest referral centers for sarcoma diagnosis and treatment.

... more about:
»Cancer »diagnosis »sarcoma

“It’s unusual that a condition or disease is recognized, subsequently studied in numerous patients, and then genetically characterized all at one place,” says Dr. Oliveira, who subspecializes in the molecular genetics of sarcomas. “Usually these things happen over a longer period of time and involve separate investigators and institutions. Because of Mayo’s network of experts, patient referrals, electronic records, bio repositories, and research scientists, it all happened here. And this is only the tip of the iceberg. Who knows what is in our repositories waiting to be discovered.”

First Seen Nearly 60 Years Earlier
While the cancer wasn’t formally identified until 2009, a subsequent search of Mayo Clinic’s medical records showed that a Mayo patient had the cancer in 1956. The identical description was found in physician notes within Mayo’s computerized database and confirmed with careful microscopic analysis. Dr. Oliveira took his investigation one step further and located that patient’s original tumor samples kept all those years in Mayo’s bio repositories. His analysis confirmed that the tumor possessed this same genetic chimera. In a way, Mayo Clinic had discovered the same rare cancer twice. The notes from the original physician added to the findings of the more recent discovery. For Dr. Oliveira, it was a surprising but not unheard of “collaboration” with a Mayo colleague from two generations ago.

Significance of the Discovery
Other than the increased knowledge about this rare cancer, its mechanisms and the potential for a treatment drug, researchers also are interested in the discovery because of its potential as a disease model.

“The PAX3-MAML3 chimera we identified in this cancer has some similarities to a unique protein found in alveolar rhabdomyosarcoma, a common cancer found in children,” says Mayo Clinic molecular biologist and co-author Jennifer Westendorf, Ph.D. “Our findings may also lead to a better understanding of this pediatric disease for which, unfortunately, there is no specific treatment.”

The research was supported by Mayo Clinic and the National Institutes of Health. Other co-authors include Xiaoke Wang; Krista Bledsoe; Rondell Graham, M.B.B.S.; Yan Asmann, Ph.D.; David Viswanatha, M.D.; Jean Lewis, M.D.; Jason Lewis, M.D.; Margaret Chou, Ph.D.; Michael Yaszemski, M.D., Ph.D.; and Jin Jen, M.D., Ph.D., all of Mayo Clinic.

###

About Mayo Clinic
Recognizing 150 years of serving humanity in 2014, Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit 150years.mayoclinic.org, http://www.mayoclinic.org and newsnetwork.mayoclinic.org.

About Mayo Clinic Cancer Center
As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 507-538-7623.

MEDIA CONTACT:
Robert Nellis, Mayo Clinic Public Affairs, 507-284-5005, newsbureau@mayo.edu

Robert Nellis | Eurek Alert!
Further information:
http://newsnetwork.mayoclinic.org/discussion/mayo-clinic-researchers-discover-new-form-of-cancer

Further reports about: Cancer diagnosis sarcoma

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>