Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mass. General study identifies genes uniquely expressed by the brain's immune cells

15.11.2013
Identifying 'sensome' of microglia could improve understanding, treatments for neurodegenerative disorders

Massachusetts General Hospital (MGH) investigators have used a new sequencing method to identify a group of genes used by the brain's immune cells – called microglia – to sense pathogenic organisms, toxins or damaged cells that require their response.

Identifying these genes should lead to better understanding of the role of microglia both in normal brains and in neurodegenerative disorders and may lead to new ways to protect against the damage caused by conditions like Alzheimer's and Parkinson's diseases. The study, which has been published online in Nature Neuroscience, also finds that the activity of microglia appears to become more protective with aging, as opposed to increasingly toxic, which some previous studies had suggested.

"We've been able to define, for the first time, a set of genes microglia use to sense their environment, which we are calling the microglial sensome," says Joseph El Khoury, MD, of the MGH Center for Immunology and Inflammatory Diseases and Division of Infectious Diseases, senior author of the study. "Identifying these genes will allow us to specifically target them in diseases of the central nervous system by developing ways to upregulate or downregulate their expression."

A type of macrophage, microglia are known to constantly survey their environment in order to sense the presence of infection, inflammation, and injured or dying cells. Depending on the situation they encounter, microglia may react in a protective manner – engulfing pathogenic organisms, toxins or damaged cells – or release toxic substances that directly destroy microbes or infected brain cells. Since this neurotoxic response can also damage healthy cells, keeping it under control is essential, and excess neurotoxicity is known to contribute to the damage caused by several neurodegenerative disorders.

El Khoury's team set out to define the transcriptome – the complete set of RNA molecules transcribed by a cell – of the microglia of healthy, adult mice and compared that expression profile to those of macrophages from peripheral tissues of the same animals and of whole brain tissue. Using a technique called direct RNA sequencing, which is more accurate than previous methods, they identified a set of genes uniquely expressed in the microglia and measured their expression levels, the first time such a gene expression 'snapshot' has been produced for any mammalian brain cell, the authors note.

Since aging is known to alter gene expression throughout the brain, the researchers then compared the sensome of young adult mice to that of aged mice. They found that – contrary to what previous studies had suggested – the expression of genes involved in potentially neurotoxic actions, such as destroying neurons, was downregulated as animals aged, while the expression of neuroprotective genes involved in sensing and removing pathogens was increased. El Khoury notes that the earlier studies suggesting increased neurotoxicity with aging did not look at the cells' full expression profile and often were done in cultured cells, not in living animals.

"Establishing the sensome of microglia allows us to clearly understand how they interact with and respond to their environment under normal conditions," he explains. "The next step is to see what happens under pathologic conditions. We know that microglia become more neurotoxic as Alzheimer's disease and other neurodegenerative disorders progress, and recent studies have identified two of the microglial sensome genes as contributing to Alzheimer's risk. Our next steps should be defining the sensome of microglia and other brain cells in humans, identifying how the sensome changes in central nervous system disorders, and eventually finding ways to safely manipulate the sensome pharmacologically."

El Khoury is an associate professor of Medicine at Harvard Medical School. Suzanne Hickman of the MGH Center for Immunology and Inflammatory Diseases (CIID), is lead and co-corresponding author of the Nature Neuroscience report. Additional co-authors are Nathan Kingery and Terry Means, PhD, MGH CIID; Toshiro Ohsumi and Mark L Borowsky, PhD, MGH Molecular Biology, and Li-chong Wang, MD, PhD, Advanced Cell Diagnostics, Hayward, Calif. The study was supported by National Institute of Neurological Disorders and Stroke grant NS059005 and National Institute of Aging grant AG032349.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>