Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marking metabolism

20.04.2009
A unique metabolic fingerprint of an individual can be built up by using a common spectroscopy technique to identify the molecules involved

Recent advances in DNA sequencing have made it relatively easy to acquire the full genotype of an individual, but it is equally important to match those genes to their functions. One useful step is to build up a ‘metabolic phenotype’ outlining all the processes operating to sustain the individual’s life.

Jun Kikuchi and co-workers at the RIKEN Plant Science Center in Yokohama, Yokohama City University and Nagoya University have developed a systematic method to characterize metabolic pathways in plants and animals. Their method involves measuring nuclear magnetic resonance (NMR) of samples and comparing them against an extensive database of molecules associated with metabolism, known as metabolites.

NMR works by detecting the response of atoms or molecules to a magnetic field. Normal carbon atoms show no response, so cells must be labeled with the stable isotope carbon-13.

Kikuchi and co-workers fed Arabidopsis plants and silkworm larvae with glucose and amino acids that had carbon-13 atoms in place of the normal carbon. After this incubation process, almost all the metabolites produced by the cells contained carbon-13. Importantly, carbon-13 displays a slightly different magnetic response depending on the structure of the molecule it is in, so each metabolite provided a unique NMR spectrum.

The researchers compared the spectra of their samples against a database of spectra for known metabolites. They identified 57 unique metabolites in the silkworm larvae, and 61 in Arabidopsis.

The team then used a technique called Principal Component Analysis to identify correlations between metabolites in the silkworm. These correlations represent metabolic pathways related to key stages in the larval development.

In particular, the results showed a random pattern of metabolic pathways over the first six days of the study, giving way to some correlations later. This suggests that better metabolic organization emerged as the larvae grew.

The study represents the first ‘top-down’ method of analyzing whole metabolic pathways. It provides a macroscopic phenotype describing cells, fluids and tissues, rather than looking at specific reactions from the atomic level upwards. What’s more, the technique is relatively quick.

“After an NMR measurement, typically taking about 1 hour, computation of the metabolic pathways finishes within half a day,” explains Eisuke Chikayama, who wrote the team’s recent paper in PLoS ONE (1).

Chikayama is also hopeful that the technique could be extended to other plants and animals, including humans.

“Our method is not restricted to any particular organism, if adequate NMR samples are ready.”

Reference

1. Chikayama, E., Suto, M., Nishihara, T., Shinozaki, K., Hirayama, T. & Kikuchi J. Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: Coarse grained views of metabolic pathways. PLoS ONE 3(11), e3805 (2008).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group: Advanced NMR Metabomics Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/686/
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>