Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marking metabolism

20.04.2009
A unique metabolic fingerprint of an individual can be built up by using a common spectroscopy technique to identify the molecules involved

Recent advances in DNA sequencing have made it relatively easy to acquire the full genotype of an individual, but it is equally important to match those genes to their functions. One useful step is to build up a ‘metabolic phenotype’ outlining all the processes operating to sustain the individual’s life.

Jun Kikuchi and co-workers at the RIKEN Plant Science Center in Yokohama, Yokohama City University and Nagoya University have developed a systematic method to characterize metabolic pathways in plants and animals. Their method involves measuring nuclear magnetic resonance (NMR) of samples and comparing them against an extensive database of molecules associated with metabolism, known as metabolites.

NMR works by detecting the response of atoms or molecules to a magnetic field. Normal carbon atoms show no response, so cells must be labeled with the stable isotope carbon-13.

Kikuchi and co-workers fed Arabidopsis plants and silkworm larvae with glucose and amino acids that had carbon-13 atoms in place of the normal carbon. After this incubation process, almost all the metabolites produced by the cells contained carbon-13. Importantly, carbon-13 displays a slightly different magnetic response depending on the structure of the molecule it is in, so each metabolite provided a unique NMR spectrum.

The researchers compared the spectra of their samples against a database of spectra for known metabolites. They identified 57 unique metabolites in the silkworm larvae, and 61 in Arabidopsis.

The team then used a technique called Principal Component Analysis to identify correlations between metabolites in the silkworm. These correlations represent metabolic pathways related to key stages in the larval development.

In particular, the results showed a random pattern of metabolic pathways over the first six days of the study, giving way to some correlations later. This suggests that better metabolic organization emerged as the larvae grew.

The study represents the first ‘top-down’ method of analyzing whole metabolic pathways. It provides a macroscopic phenotype describing cells, fluids and tissues, rather than looking at specific reactions from the atomic level upwards. What’s more, the technique is relatively quick.

“After an NMR measurement, typically taking about 1 hour, computation of the metabolic pathways finishes within half a day,” explains Eisuke Chikayama, who wrote the team’s recent paper in PLoS ONE (1).

Chikayama is also hopeful that the technique could be extended to other plants and animals, including humans.

“Our method is not restricted to any particular organism, if adequate NMR samples are ready.”

Reference

1. Chikayama, E., Suto, M., Nishihara, T., Shinozaki, K., Hirayama, T. & Kikuchi J. Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: Coarse grained views of metabolic pathways. PLoS ONE 3(11), e3805 (2008).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group: Advanced NMR Metabomics Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/686/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>