Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Marking metabolism

A unique metabolic fingerprint of an individual can be built up by using a common spectroscopy technique to identify the molecules involved

Recent advances in DNA sequencing have made it relatively easy to acquire the full genotype of an individual, but it is equally important to match those genes to their functions. One useful step is to build up a ‘metabolic phenotype’ outlining all the processes operating to sustain the individual’s life.

Jun Kikuchi and co-workers at the RIKEN Plant Science Center in Yokohama, Yokohama City University and Nagoya University have developed a systematic method to characterize metabolic pathways in plants and animals. Their method involves measuring nuclear magnetic resonance (NMR) of samples and comparing them against an extensive database of molecules associated with metabolism, known as metabolites.

NMR works by detecting the response of atoms or molecules to a magnetic field. Normal carbon atoms show no response, so cells must be labeled with the stable isotope carbon-13.

Kikuchi and co-workers fed Arabidopsis plants and silkworm larvae with glucose and amino acids that had carbon-13 atoms in place of the normal carbon. After this incubation process, almost all the metabolites produced by the cells contained carbon-13. Importantly, carbon-13 displays a slightly different magnetic response depending on the structure of the molecule it is in, so each metabolite provided a unique NMR spectrum.

The researchers compared the spectra of their samples against a database of spectra for known metabolites. They identified 57 unique metabolites in the silkworm larvae, and 61 in Arabidopsis.

The team then used a technique called Principal Component Analysis to identify correlations between metabolites in the silkworm. These correlations represent metabolic pathways related to key stages in the larval development.

In particular, the results showed a random pattern of metabolic pathways over the first six days of the study, giving way to some correlations later. This suggests that better metabolic organization emerged as the larvae grew.

The study represents the first ‘top-down’ method of analyzing whole metabolic pathways. It provides a macroscopic phenotype describing cells, fluids and tissues, rather than looking at specific reactions from the atomic level upwards. What’s more, the technique is relatively quick.

“After an NMR measurement, typically taking about 1 hour, computation of the metabolic pathways finishes within half a day,” explains Eisuke Chikayama, who wrote the team’s recent paper in PLoS ONE (1).

Chikayama is also hopeful that the technique could be extended to other plants and animals, including humans.

“Our method is not restricted to any particular organism, if adequate NMR samples are ready.”


1. Chikayama, E., Suto, M., Nishihara, T., Shinozaki, K., Hirayama, T. & Kikuchi J. Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: Coarse grained views of metabolic pathways. PLoS ONE 3(11), e3805 (2008).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group: Advanced NMR Metabomics Research Unit

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>