Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine Lab Tracks Pollutants in Dolphins and Beluga Whales

12.05.2011
Bottlenose dolphins* and beluga whales**, two marine species at or near the top of their respective food webs, accumulate more chemical pollutants in their bodies when they live and feed in waters near urbanized areas, according to scientists working at the Hollings Marine Laboratory (HML), a government-university collaboration in Charleston, S.C.

In papers recently published online by the journal Environmental Science & Technology, one research team looked at the levels of persistent organic pollutants (POPs) found in male dolphins along the U.S. East and Gulf of Mexico coasts and Bermuda, while the other group examined the levels of perfluorinated compounds (PFCs) in beluga whales at two Alaskan locations. Data gathered in both studies are expected to serve as baseline measurements for future research to define the health effects and impacts of these pollutants on the two species.

POPs are a large group of man-made chemicals that, as their name indicates, persist in the environment. They can spread globally through air and water, accumulate in the food chain, and may have carcinogenic, neurodevelopmental, immune or endrocrine effects on both wildlife and humans. To study POP concentrations in male bottlenose dolphins (Tursiops truncatus), researchers from the National Institute of Standards and Technology (NIST), the National Oceanic and Atmospheric Administration (NOAA), the Duke University Marine Laboratory, Florida State University and the Chicago Zoological Society teamed up to collect and examine blubber biopsy samples from 2000 to 2007 at eight locations along the U.S. East coast (from New Jersey to Eastern Florida), five sites in the eastern Gulf of Mexico and off Bermuda. The researchers analyzed the dolphin blubber for POPs that were once used as insecticides (such as DDT), insulating fluids (polychlorinated biphenyls, or PCBs), flame retardants (polybrominated diphenyl ethers, or PBDEs) and a fungicide (hexachlorobenzene, or HCB).

Overall, PCBs were the pollutants found in the highest concentrations across the 14 sampling locations, followed by DDT, other pesticides and PBDEs, and HCB. Levels for POPs were statistically higher in dolphins living and feeding in waters near more urban and industrialized areas. The exceptions were the PCB levels recorded in dolphins living in waters near Brunswick, Ga., contaminated from a former factory that is now an Environmental Protection Agency “Superfund” cleanup site. These PCB levels were the highest ever observed in a group of living marine mammals.

In the second study, a NIST team analyzed the levels of 12 PFCs in livers harvested from 68 beluga whales (Delphinapterus leucas) that had lived and fed in two Alaskan locations: Cook Inlet in the urban southern part of the state and the Chukchi Sea in the remote northern part. The samples were collected from 1989 to 2006 by Native Alaskans during subsistence hunts and stored at NIST’s National Marine Mammal Tissue Bank (NMMTB). This was the first study to look at the concentration of PFCs in belugas from Alaska.

PFCs have been used as nonstick coatings and additives in a wide variety of goods including cookware, furniture fabrics, carpets, food packaging, fire-fighting foams and cosmetics. They are very stable, persist for a long time in the environment and are known to be toxic to the liver, reproductive organs and immune systems of laboratory mammals.

PFCs were detected in all of the beluga livers, with two compounds—perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA)—found in more than half the samples. All but one of the PFC concentrations measured were significantly higher in the Cook Inlet belugas, an expected result given the nearby urban, industrialized area. The exception was PFOSA, where levels were higher amongst the Chukchi Sea whales. The researchers are unsure if this is the result of the pollutant being carried into the remote region by ocean currents, atmospheric transport or a combination of both. They also found that PFC concentrations in belugas increased significantly over the seven-year study period and were mostly higher in males.

The HML is a unique partnership of governmental and academic agencies including NIST, NOAA’s National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina. NIST maintains the NMMTB at the HML to provide archived samples for retrospective analysis of contaminants of emerging concern.

* J. Kucklick, L. Schwacke, R. Wells, A. Hohn, A. Guichard, J. Yordy, L. Hansen, E. Zolman, R. Wilson, J. Litz, D. Nowacek, T. Rowles, R. Pugh, B. Balmer, C. Sinclair and P. Rosel. Bottlenose dolphins as indicators of persistent organic pollutants in the western north Atlantic ocean and northern gulf of Mexico. Environmental Science & Technology. Published online Apr. 28, 2011.

** J.L. Reiner, S.G. O’Connell, A.J. Moors, J.R. Kucklick, P.R. Becker and J.M. Keller. Spatial and temporal trends of perfluorinated compounds in beluga whales (Delphinapterus leucas) from Alaska. Environmental Science & Technology. Published online Feb. 10, 2011.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>