Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria survive better with solar energy

29.04.2010
Thanks to a unique light-sensitive pigment, bacteria can survive better in the sea. This new discovery was made by researchers at Linnaeus University in Sweden, working together with scientists in Spain.

The findings are presented in an article in the prestigious scientific journal PLoS Biology.

“It has long been known that cyanobacteria can use sunlight to carry out photosynthesis,” says Jarone Pinhassi, a researcher in aquatic ecology at Linnaeus University in Kalmar. But there was previously no evidence that other bacteria, those with the photo pigment proteorhodopsin, can exploit sunlight to improve their survival.

The light-sensitive pigment proteorhodopsin was discovered in 2000 by American scientists who were studying the genes in marine bacteria. Among animals, proteorhodopsin is found in the retina, and it enables humans to see in the dark. In microorganisms, the function can vary, but it was long unclear how marina bacteria use proteorhodopsin and what they might do with the energy they capture from sunlight.

Now, a decade later, the current study presents the first direct evidence that proteorhodopsin is useful for marine bacteria. This is shown through mutation studies in a marine bacterium closely related to the species Vibrio cholerae, the bacterium that causes the disease cholera. The study shows that the photo protein supplies the bacterium with energy to survive “hard times” in anticipation of better conditions for growth. This is of great importance in the sea since the nutrition supply often varies a great deal.

There are roughly a billion bacteria per liter of sea water, and these bacteria’s activities, breaking down organic material and growing, are central for an understanding of the ocean’s turnover of carbon dioxide and the cycle of nitrogen and phosphorous. The fact that nearly half of all marine bacteria in the oceans also have proteorhodopsin shows how widespread this photo protein is, and what potential it might have to affect the survival of bacteria.

“There is an enormous capacity for bacteria to take advantage of molecular innovations that benefit them,” says Jarone Pinhassi. “And the fact that it’s good to exploit sunlight hardly surprises anyone.”

For further information
Dr. Jarone Pinhassi, associate professor, phone: +46 (0)480-44 62 12; mobile phone: +46 (0)70-275 63 18, jarone.pinhassi@lnu.se

Pressofficer Christina Dahlgren,christina.dahlgren@lnu.se or +46-070 572 2656

Christina Dahlgren | idw
Further information:
http://www.vr.se
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000358

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>