Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria survive better with solar energy

29.04.2010
Thanks to a unique light-sensitive pigment, bacteria can survive better in the sea. This new discovery was made by researchers at Linnaeus University in Sweden, working together with scientists in Spain.

The findings are presented in an article in the prestigious scientific journal PLoS Biology.

“It has long been known that cyanobacteria can use sunlight to carry out photosynthesis,” says Jarone Pinhassi, a researcher in aquatic ecology at Linnaeus University in Kalmar. But there was previously no evidence that other bacteria, those with the photo pigment proteorhodopsin, can exploit sunlight to improve their survival.

The light-sensitive pigment proteorhodopsin was discovered in 2000 by American scientists who were studying the genes in marine bacteria. Among animals, proteorhodopsin is found in the retina, and it enables humans to see in the dark. In microorganisms, the function can vary, but it was long unclear how marina bacteria use proteorhodopsin and what they might do with the energy they capture from sunlight.

Now, a decade later, the current study presents the first direct evidence that proteorhodopsin is useful for marine bacteria. This is shown through mutation studies in a marine bacterium closely related to the species Vibrio cholerae, the bacterium that causes the disease cholera. The study shows that the photo protein supplies the bacterium with energy to survive “hard times” in anticipation of better conditions for growth. This is of great importance in the sea since the nutrition supply often varies a great deal.

There are roughly a billion bacteria per liter of sea water, and these bacteria’s activities, breaking down organic material and growing, are central for an understanding of the ocean’s turnover of carbon dioxide and the cycle of nitrogen and phosphorous. The fact that nearly half of all marine bacteria in the oceans also have proteorhodopsin shows how widespread this photo protein is, and what potential it might have to affect the survival of bacteria.

“There is an enormous capacity for bacteria to take advantage of molecular innovations that benefit them,” says Jarone Pinhassi. “And the fact that it’s good to exploit sunlight hardly surprises anyone.”

For further information
Dr. Jarone Pinhassi, associate professor, phone: +46 (0)480-44 62 12; mobile phone: +46 (0)70-275 63 18, jarone.pinhassi@lnu.se

Pressofficer Christina Dahlgren,christina.dahlgren@lnu.se or +46-070 572 2656

Christina Dahlgren | idw
Further information:
http://www.vr.se
http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000358

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>