Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New malaria protein structure upends theory of how cells grow and move

31.05.2011
Researchers from the Walter and Eliza Hall Institute have overturned conventional wisdom on how cell movement across all species is controlled, solving the structure of a protein that cuts power to the cell 'motor'. The protein could be a potential drug target for future malaria and anti-cancer treatments.

By studying the structure of actin-depolymerising factor 1 (ADF1), a key protein involved in controlling the movement of malaria parasites, the researchers have demonstrated that scientists' decades-long understanding of the relationship between protein structure and cell movement is flawed.

Dr Jake Baum and Mr Wilson Wong from the institute's Infection and Immunity division and Dr Jacqui Gulbis from the Structural Biology division, in collaboration with Dr Dave Kovar from the University of Chicago, US, led the research, which appears in today's edition of the Proceedings of the National Academy of Sciences USA.

Dr Baum said actin-depolymerising factors (ADFs) and their genetic regulators have long been known to be involved in controlling cell movement, including the movement of malaria parasites and movement of cancer cells through the body. Anti-cancer treatments that exploit this knowledge are under development.

"ADFs help the cell to recycle actin, a protein which controls critical functions such as cell motility, muscle contraction, and cell division and signaling," Dr Baum said. "Actin has unusual properties, being able to spontaneously form polymers which are used by cells to engage internal molecular motors – much like a clutch does in the engine of your car. A suite of accessory proteins control how the clutch is engaged, including those that dismantle or 'cut' these polymers, such as ADF1.

"For many years research in yeast, plants and humans has suggested that the ability of ADFs to dismantle actin polymers – effectively disengaging the clutch – required a small molecular 'finger' to break the actin in two," Dr Baum said. "However, when we looked at the malaria ADF1 protein, we were surprised to discover that it lacked this molecular 'finger', yet remarkably was still able to cut the polymers. We discovered that a previously overlooked part of the protein, effectively the 'knuckle' of the finger-like protrusion, was responsible for dismantling the actin; we then discovered this 'hidden' domain was present across all ADFs."

Mr Wong said that the Australian Synchrotron was critical in providing the extraordinary detail that helped the team pinpoint the protein 'knuckle'. "This is the first time a 3D image of the ADF protein has been captured in such detail from any cell type," Mr Wong said. "Imaging the protein structure at such high resolution was critical in proving beyond question the segment of the protein responsible for cutting actin polymers. Obtaining that image would have been impossible without the synchrotron facilities."

Dr Baum said the new knowledge will give researchers a much clearer understanding of one of the fundamental steps governing how cells across all species grow, divide and, importantly, move. "Knowing that this one small segment of the protein is singularly responsible for ADF1 function means that we need to focus on an entirely new target not only for developing anti-malarial treatments, but also other diseases where potential treatments target actin, such as anti-cancer therapeutics," Dr Baum said. "Malaria researchers are normally used to following insights from other biological systems; this is a case of the exception proving the rule: where the malaria parasite, being so unusual, reveals how all other ADFs across nature work."

More than 250 million people contract malaria each year, and almost one million people, mostly children, die from the disease. The malaria parasite has developed resistance to most of the therapeutic agents available for treating the disease, so identifying novel ways of targeting the parasite is crucial.

Dr Baum said that the discovery could lead to development of drugs entirely geared toward preventing malaria infection, without adverse effects on human cells. "One of the primary goals of the global fight against malaria is to develop novel drugs that prevent infection and transmission in all hosts, to break the malaria cycle," Dr Baum said. "There is a very real possibility that, in the future, drugs could be developed that 'jam' this molecular 'clutch', meaning the malaria parasite cannot move and continue to infect cells in any of its conventional hosts, which would be a huge breakthrough for the field."

This project was funded by the National Health and Medical Research Council (NHMRC).

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>