Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making liquid crystals stand tall

Molecular ‘handles’ that allow on-demand growth of thick columnar films make enhanced liquid crystal devices viable.

Most liquid-crystalline displays contain rod-like molecules that quickly switch from one orientation to another when subjected to electric fields. This movement creates a shutter effect that turns light on and off at high rates.

But the conductivity of rod-like molecules pales in comparison to disc-shaped, or discotic, liquid crystals. Composed primarily of aromatic molecules surrounded by flexible side chains, discotic molecules can stack into extended columns that enable one-dimensional charge transport and semiconducting capabilities. However, these columns have such tight packing that no one has found a way to orient them reliably using electricity.

Now, researchers led by Takuzo Aida from the University of Tokyo, Hideo Takezoe from the Tokyo Institute of Technology and Masaki Takata from the RIKEN SPring-8 Center in Harima have discovered that aromatic amides with branched, paraffin-like side chains can act as molecular ‘handles’ for electric field alignment1. Furthermore, they succeeded in growing discotic films hundreds of times thicker than before, putting devices that incorporate this technology one step closer to production.

Aida and colleagues were investigating discotic liquid crystals consisting of molecules called corannulene derivatives when they made their finding. Corannulene has a core of five fused hydrocarbon rings surrounded by ten aromatic amides, giving it a bowl-like shape. Despite this compound’s large size, the researchers found that electric fields could uniformly align the columns with hexagonal geometries over a range of temperatures (Fig. 1).

The researchers first postulated that the inner dipole of the curved corannulene core accounted for the field-induced orientations. But when they synthesized a similar discotic liquid crystal containing a flat, non-polar triphenylene core, they observed the same striking field alignment—key evidence that the amide side chains acted as responsive handles that interact with the applied electric field and guide the discotic molecules into place.

Armed with this knowledge, the researchers synthesized several discotic columnar liquid crystals with slightly tweaked handles to optimize this behavior. Nearly all of these entities showed columnar alignment that persisted even after extinguishing the electric field. The team could also break apart the columns and restore the molecules’ random orientations using a simple heating procedure.

Because the column heights depended on applied field strength, the researchers produced millimeter-thick films in any desired orientation by sandwiching their compounds between two large-area electrodes. “Unless conducting discotic columns can be aligned to macroscopic length scales, they will remain impractical,” says Aida. “Therefore, our achievement is quite important for organic electronic device applications.”

Miyajima, D., Araoka, F., Takezoe, H., Kim, J., Kato, K., Takata, M. & Aida, T. Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules in millimeter-thick films. Angewandte Chemie International Edition 50, 7865–7869 (2011).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>