Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major breakthrough could help detoxify pollutants

20.10.2014

Scientists at The University of Manchester hope a major breakthrough could lead to more effective methods for detoxifying dangerous pollutants like PCBs and dioxins. The result is a culmination of 15 years of research and has been published in Nature. It details how certain organisms manage to lower the toxicity of pollutants.

The team at the Manchester Institute of Biotechnology were investigating how some natural organisms manage to lower the level of toxicity and shorten the life span of several notorious pollutants.

Professor David Leys explains the research: "We already know that some of the most toxic pollutants contain halogen atoms and that most biological systems simply don't know how to deal with these molecules. However, there are some organisms that can remove these halogen atoms using vitamin B12. Our research has identified that they use vitamin B12 in a very different way to how we currently understand it."

He continues: "Detailing how this novel process of detoxification works means that we are now in a position to look at replicating it. We hope that ultimately new ways of combating some of the world's biggest toxins can now be developed more quickly and efficiently."

It's taken Professor Leys 15 years of research to reach this breakthrough, made possible by a dedicated European Research Council (ERC) grant. The main difficulty has been in growing enough of the natural organisms to be able to study how they detoxify the pollutants. The team at the MIB were finally able to obtain key proteins through genetic modification of other, faster growing organisms. They then used X-ray crystallography to study in 3D how halogen removal is achieved.

The main drive behind this research has been to look at ways of combatting the dozens of very harmful molecules that have been released into the environment. Many have been directly expelled by pollutants or from burning household waste. As the concentration of these molecules has increased over time their presence poses more of a threat to the environment and humanity. Some measures have already been taken to limit the production of pollutants, for example PCBs were banned in the United States in the 1970s and worldwide in 2001.

Professor Leys says: "As well as combatting the toxicity and longevity of pollutants we're also confident that our findings can help to develop a better method for screening environmental or food samples."

www.manchester.ac.uk

Morwenna Grills | Eurek Alert!

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>