Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research discovery may block ALS disease process

20.04.2011
In the first animal model of Amyotrophic Lateral Sclerosis (ALS), developed by Dr. Udai Pandey, Assistant Professor of Genetics at LSU Health Sciences Center New Orleans, Dr. Pandey's lab has found in fruit flies that blocking the abnormal movement of a protein made by a mutated gene called FUS also blocks the disease process. The research is available online in the Advanced Access section of the journal Human Molecular Genetics website, posted on April 12, 2011. It will be published in an upcoming issue of the journal.

The fruit flies were engineered to carry and express a mutated human FUS gene. This mutated FUS gene has been shown to be one of the major causes of both familial and sporadic ALS. In the fruit flies, the resulting neurodegeneration impairs their ability to walk or climb and the defect is also easily visualized in the structure of their eyes. In addition, the flies carrying the defective FUS gene demonstrate hallmarks of the human disease, such as an age-dependent degeneration of neurons, accumulation of abnormal proteins and a decrease in life span.

Also as seen in human ALS patients, the disease-causing FUS protein that's formed from the gene abnormally moves to the cytoplasm rather than staying in the cell nucleus. Dr. Pandey's lab found that blocking this abnormal migration could block the disease process. All these features make the fly model a valuable resource for performing drug screens to identify drugs that could modify the effects of the mutated gene.

"These findings prompt us to look for drugs that can help in keeping the defective FUS protein in the nucleus as a potential therapeutic intervention" notes Pandey. "The fly model is an inexpensive and fast way to study many human diseases such as cancer, Alzheimer's disease and Parkinson's disease. Many basic biological processes are well conserved between humans and fruit flies, and nearly 75% of human disease-causing genes are believed to have a functional partner (homolog) in the fly that makes these small animals a highly tractable model system."

Dr. Pandey's group found that normal FUS interacts with another major human ALS-linked protein TDP-43, but mutated FUS interacts abnormally with normal TDP-43. Mutations in the TDP-43 gene have also been found to cause ALS. Interestingly, these two ALS-linked proteins do not seem to interact if trapped in the nucleus.

According to the National Institutes of Health, Amyotrophic Lateral Sclerosis, sometimes called Lou Gehrig's disease, is a rapidly progressive, invariably fatal neurological disease that attacks the nerve cells (neurons) responsible for controlling voluntary muscles. The disease belongs to a group of disorders known as motor neuron diseases, which are characterized by the gradual degeneration and death of motor neurons. Motor neurons are nerve cells located in the brain, brainstem, and spinal cord that serve as controlling units and vital communication links between the nervous system and the voluntary muscles of the body. Messages from motor neurons in the brain (called upper motor neurons) are transmitted to motor neurons in the spinal cord (called lower motor neurons) and from them to particular muscles. In ALS, both the upper motor neurons and the lower motor neurons degenerate or die, ceasing to send messages to muscles. Unable to function, the muscles gradually weaken, waste away (atrophy), and twitch (fasciculations). Eventually, the ability of the brain to start and control voluntary movement is lost.

"Our next goal is to identify other factors such as proteins or RNA that mutant forms of FUS target so that we can get more insights into the disease mechanisms" said Nicholas Lanson Jr., an LSUHSC research associate and first author of the paper.

The Robert Packard Center for ALS at Johns Hopkins generously funded Dr. Pandey's lab in developing a fruit fly model of ALS. Nicholas Lanson Jr., Astha Maltare (LSUHSC), Rebecca Smith, J Paul Taylor (St. Jude Children's Hospital), Ji Ham Kim and Thomas E Lloyd (Johns Hopkins Medical Center) are other contributors on this publication.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. LSUHSC faculty take care of patients in public and private settings in the region, conduct research that improves the quality of life and generates jobs and economic impact, and perform service and outreach activities spanning the State. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>