Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research discovery may block ALS disease process

20.04.2011
In the first animal model of Amyotrophic Lateral Sclerosis (ALS), developed by Dr. Udai Pandey, Assistant Professor of Genetics at LSU Health Sciences Center New Orleans, Dr. Pandey's lab has found in fruit flies that blocking the abnormal movement of a protein made by a mutated gene called FUS also blocks the disease process. The research is available online in the Advanced Access section of the journal Human Molecular Genetics website, posted on April 12, 2011. It will be published in an upcoming issue of the journal.

The fruit flies were engineered to carry and express a mutated human FUS gene. This mutated FUS gene has been shown to be one of the major causes of both familial and sporadic ALS. In the fruit flies, the resulting neurodegeneration impairs their ability to walk or climb and the defect is also easily visualized in the structure of their eyes. In addition, the flies carrying the defective FUS gene demonstrate hallmarks of the human disease, such as an age-dependent degeneration of neurons, accumulation of abnormal proteins and a decrease in life span.

Also as seen in human ALS patients, the disease-causing FUS protein that's formed from the gene abnormally moves to the cytoplasm rather than staying in the cell nucleus. Dr. Pandey's lab found that blocking this abnormal migration could block the disease process. All these features make the fly model a valuable resource for performing drug screens to identify drugs that could modify the effects of the mutated gene.

"These findings prompt us to look for drugs that can help in keeping the defective FUS protein in the nucleus as a potential therapeutic intervention" notes Pandey. "The fly model is an inexpensive and fast way to study many human diseases such as cancer, Alzheimer's disease and Parkinson's disease. Many basic biological processes are well conserved between humans and fruit flies, and nearly 75% of human disease-causing genes are believed to have a functional partner (homolog) in the fly that makes these small animals a highly tractable model system."

Dr. Pandey's group found that normal FUS interacts with another major human ALS-linked protein TDP-43, but mutated FUS interacts abnormally with normal TDP-43. Mutations in the TDP-43 gene have also been found to cause ALS. Interestingly, these two ALS-linked proteins do not seem to interact if trapped in the nucleus.

According to the National Institutes of Health, Amyotrophic Lateral Sclerosis, sometimes called Lou Gehrig's disease, is a rapidly progressive, invariably fatal neurological disease that attacks the nerve cells (neurons) responsible for controlling voluntary muscles. The disease belongs to a group of disorders known as motor neuron diseases, which are characterized by the gradual degeneration and death of motor neurons. Motor neurons are nerve cells located in the brain, brainstem, and spinal cord that serve as controlling units and vital communication links between the nervous system and the voluntary muscles of the body. Messages from motor neurons in the brain (called upper motor neurons) are transmitted to motor neurons in the spinal cord (called lower motor neurons) and from them to particular muscles. In ALS, both the upper motor neurons and the lower motor neurons degenerate or die, ceasing to send messages to muscles. Unable to function, the muscles gradually weaken, waste away (atrophy), and twitch (fasciculations). Eventually, the ability of the brain to start and control voluntary movement is lost.

"Our next goal is to identify other factors such as proteins or RNA that mutant forms of FUS target so that we can get more insights into the disease mechanisms" said Nicholas Lanson Jr., an LSUHSC research associate and first author of the paper.

The Robert Packard Center for ALS at Johns Hopkins generously funded Dr. Pandey's lab in developing a fruit fly model of ALS. Nicholas Lanson Jr., Astha Maltare (LSUHSC), Rebecca Smith, J Paul Taylor (St. Jude Children's Hospital), Ji Ham Kim and Thomas E Lloyd (Johns Hopkins Medical Center) are other contributors on this publication.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC New Orleans consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, Schools of Allied Health Professions and Graduate Studies, and the only School of Nursing within an academic health center in the State of Louisiana. LSUHSC faculty take care of patients in public and private settings in the region, conduct research that improves the quality of life and generates jobs and economic impact, and perform service and outreach activities spanning the State. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>