Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost in a crowd

29.03.2010
Introducing additional complexity to a simulation gives researchers better insight into how cellular signaling networks might operate

One of the biggest challenges in simulating biological processes is developing mathematical models that accurately reflect the dynamics of real molecules.

Koichi Takahashi, of the RIKEN Advanced Science Institute in Yokohama, is in a position to know—as a founding member of the E-Cell Project, he and his colleagues have spent the last 14 years working towards development of a comprehensive simulation of a whole functioning cell.

Takahashi’s work has focused on dynamic behavior of populations of signaling factors. Such analyses are typically based on ‘mean-field’ descriptions, which assume an essentially averaged distribution of molecules throughout the cellular volume. This shortcut overlooks a lot of real-world complexity, but is made necessary by the excessive computational demands of more accurate models.

Things have now changed, thanks to a breakthrough from Pieter Rein ten Wolde at AMOLF in the Netherlands, whose team developed an algorithm called Green’s Function Reaction Dynamics (GFRD) that enables sophisticated single-particle-level simulations with considerably reduced computing power1. Together, Takahashi and ten Wolde developed a faster and more accurate version of GFRD, and applied it to mitogen-activated protein kinase (MAPK) cascades, a type of signaling pathway associated with diverse functions in the eukaryotic cell2.

MAPK signaling is a multi-stage process; at each step, one kinase enzyme activates another, downstream kinase through two sequential chemical modifications. Predictions from mean-field-based simulations of MAPK dynamics have depended heavily on whether the enzyme is assumed to act ‘processively’, introducing both modifications without releasing the substrate, or ‘distributively’, releasing the substrate after each modification.

However, Takahashi and ten Wolde found strikingly different results with their model, which introduces the possibility of re-binding—a scenario in which substrates receive their second modification from the same enzyme that introduced the first. For example, slow diffusion of enzymes and substrate within the cytosol could lead to much more rapid overall activation kinetics by keeping substrates within easy reach of their upstream kinases. “‘Walking slower’ can speed up the response of the system,” says Takahashi. This is the opposite of mean-field model predictions, and essentially erases the distinction between distributive and processive in this context.

These data demonstrate the importance of increasing complexity in models, a direction in which the authors are continuing to move. “We are extending our method so that we can also include structures such as membranes and organelles,” says Takahashi. “We are also working to make the method even more high-performance, because that will enable us to represent intracellular molecular crowding.”

The corresponding author for this highlight is based at the Biochemical Simulation Research Team, RIKEN Advanced Science Institute.

Journal information

1. van Zon, J.S. & ten Wolde, P.R. Simulating biochemical networks at the particle level and in time and space: Green’s function reaction dynamics. Physical Review Letters 94, 128103 (2005).

2. Takahashi, K., Tãnase-Nicola, S. & ten Wolde, P.R. Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proceedings of the National Academy of Sciences USA 107, 2473–2478 (2010).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6226
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>