Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long telomeres can be linked to poorer memory

26.04.2010
A team of collaborating researchers from the Swedish universities of Umeå, Stockholm, and Linköping is now publishing data showing that long telomeres in non-demented adults and seniors can be associated with poorer memory.

The end portions of chromosomes, telomeres, are important in protecting the genes inside. Every time a cell divides, these telomeres become shorter. After multiple cell divisions, the telomeres become so short that the cell either self-dies or wind up in an aged, resting stage. Measurement of telomere lengths therefore provides information about how many times the cells has divided in the past.

This new study is part of the major Betula Project, which, according to the Swedish Research Council, is one of the ten strongest research settings in Sweden and has the goal of studying how the memory changes during aging. It comprises 427 non-demented individuals between the ages of 41 and 81 years. The scientists studied whether individuals with different forms of apolipoprotein E (APOE) have different telomere lengths in their blood cells and whether variations in telomere length is linked to memory capacity, assessed with the help of memory tests. Previous research has described the connection between the form of APOE 4 and cardiovascular disease and dementia. It has also been shown that this variant increases the risk of a type of memory degradation that is most pronounced in older individuals without dementia. This is a degradation of memory in the so-called episodic memory system, which, in simple terms, has the assignment of remembering episodes in life.

In summary the newly published study shows that individuals with APOE 4 have longer telomeres than those with other APOE variants. It was also found that the difference in telomere length between APOE 4 and other APOE variants increased the younger the individuals compared were. In the group that had the variant APOE 4 the individuals with the longest telomeres performed less well on episodic memory tests but not on other tests.

The APOE protein plays a central role in transporting and metabolizing blood fats, but the various forms also appear to have different effects on other processes in the body. The 4 variant is linked with worse blood fats, more inflammation, and increased oxidative stress compared with the 2 and 3 variants. It has previously been shown that both inflammation and oxidative stress lead to shorter telomere length. It was therefore surprising that individuals with the 4 variant had longer telomeres than individuals with the other APOE forms. The longer telomeres support the notion that the cells have undergone a lower number of cell divisions and that the differences in length arose at some time prior to the lower age limit for the study. Such reduced cell division early in life may be an explanation for the worse episodic memory of people with the 4 variant compared with that of individuals with other variants. More studies are needed to confirm these findings and to determine through what mechanisms long telomeres are associated with poorer episodic memory and with any other possible APOE 4-associated processes in the body.

The researchers behind the study are Karl-Fredrik Norrback, Rolf Adolfsson, Göran Roos, and Lars Nyberg at Umeå University; Lars-Göran Nilsson, Stockholm University; and Thomas Karlsson, Linköping University, as well as doctoral candidate Mikael Wikgren. The project coordinator Annelie Nordin has also been important for the conducting of the study.

For more information, please contact: Karl-Fredrik Norrback, MD, PhD, Dept. of Clinical Science, Division of Psychiatry, Umeå University, Mobile phone: +46 (0)70-441 5904, e-mail: karl-fredrik.norrback@psychiat.umu.se

Pressofficer Hans Fällman; hans.fallman@adm.umu.se; +46-70 691 28 29

Reference: Wikgren M, Karlsson T, Nilbrink T, Nordfjäll K, Hultdin J, Sleegers K, Van Broeckhoven C, Nyberg L, Roos G, Nilsson LG, Adolfsson R, Norrback KF APOE epsilon4 is associated with longer telomeres, and longer telomeres among epsilon4 carriers predicts worse episodic memory, Neurobiology of Aging, 2010 Apr 13 (10.1016/j.neurobiolaging.2010.03.004).

Hans Fällman | idw
Further information:
http://www.vr.se

Further reports about: apoE blood cell cell division episodic memory oxidative stress

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>