Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long telomeres can be linked to poorer memory

26.04.2010
A team of collaborating researchers from the Swedish universities of Umeå, Stockholm, and Linköping is now publishing data showing that long telomeres in non-demented adults and seniors can be associated with poorer memory.

The end portions of chromosomes, telomeres, are important in protecting the genes inside. Every time a cell divides, these telomeres become shorter. After multiple cell divisions, the telomeres become so short that the cell either self-dies or wind up in an aged, resting stage. Measurement of telomere lengths therefore provides information about how many times the cells has divided in the past.

This new study is part of the major Betula Project, which, according to the Swedish Research Council, is one of the ten strongest research settings in Sweden and has the goal of studying how the memory changes during aging. It comprises 427 non-demented individuals between the ages of 41 and 81 years. The scientists studied whether individuals with different forms of apolipoprotein E (APOE) have different telomere lengths in their blood cells and whether variations in telomere length is linked to memory capacity, assessed with the help of memory tests. Previous research has described the connection between the form of APOE 4 and cardiovascular disease and dementia. It has also been shown that this variant increases the risk of a type of memory degradation that is most pronounced in older individuals without dementia. This is a degradation of memory in the so-called episodic memory system, which, in simple terms, has the assignment of remembering episodes in life.

In summary the newly published study shows that individuals with APOE 4 have longer telomeres than those with other APOE variants. It was also found that the difference in telomere length between APOE 4 and other APOE variants increased the younger the individuals compared were. In the group that had the variant APOE 4 the individuals with the longest telomeres performed less well on episodic memory tests but not on other tests.

The APOE protein plays a central role in transporting and metabolizing blood fats, but the various forms also appear to have different effects on other processes in the body. The 4 variant is linked with worse blood fats, more inflammation, and increased oxidative stress compared with the 2 and 3 variants. It has previously been shown that both inflammation and oxidative stress lead to shorter telomere length. It was therefore surprising that individuals with the 4 variant had longer telomeres than individuals with the other APOE forms. The longer telomeres support the notion that the cells have undergone a lower number of cell divisions and that the differences in length arose at some time prior to the lower age limit for the study. Such reduced cell division early in life may be an explanation for the worse episodic memory of people with the 4 variant compared with that of individuals with other variants. More studies are needed to confirm these findings and to determine through what mechanisms long telomeres are associated with poorer episodic memory and with any other possible APOE 4-associated processes in the body.

The researchers behind the study are Karl-Fredrik Norrback, Rolf Adolfsson, Göran Roos, and Lars Nyberg at Umeå University; Lars-Göran Nilsson, Stockholm University; and Thomas Karlsson, Linköping University, as well as doctoral candidate Mikael Wikgren. The project coordinator Annelie Nordin has also been important for the conducting of the study.

For more information, please contact: Karl-Fredrik Norrback, MD, PhD, Dept. of Clinical Science, Division of Psychiatry, Umeå University, Mobile phone: +46 (0)70-441 5904, e-mail: karl-fredrik.norrback@psychiat.umu.se

Pressofficer Hans Fällman; hans.fallman@adm.umu.se; +46-70 691 28 29

Reference: Wikgren M, Karlsson T, Nilbrink T, Nordfjäll K, Hultdin J, Sleegers K, Van Broeckhoven C, Nyberg L, Roos G, Nilsson LG, Adolfsson R, Norrback KF APOE epsilon4 is associated with longer telomeres, and longer telomeres among epsilon4 carriers predicts worse episodic memory, Neurobiology of Aging, 2010 Apr 13 (10.1016/j.neurobiolaging.2010.03.004).

Hans Fällman | idw
Further information:
http://www.vr.se

Further reports about: apoE blood cell cell division episodic memory oxidative stress

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>