Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lone whales shout to overcome noise

07.07.2010
Just like people in a bar or other noisy location, North American right whales increase the volume of their calls as environmental noise increases; and just like humans, at a certain point, it may become too costly to continue to shout, according to marine and acoustic scientists.

"The impacts of increases in ocean noise from human activities are a concern for the conservation of marine animals like right whales," said Susan Parks, assistant professor of acoustics and research associate, Applied Research Laboratory, Penn State. "The ability to change vocalizations to compensate for environmental noise is critical for successful communication in an increasingly noisy ocean."


This is a North Atlantic right whale diving with tail in the air. Credit: Susan Parks: Penn State

Right whales are large baleen whales that often approach close to shore. They may have been given the name because they were the right whales to hunt as they are rich in blubber, slow swimming and remain afloat after death. Consequently, whalers nearly hunted these whales to extinction. Currently right whales are monitored to determine the health and size of the population. The northern and southern right whales are on the endangered species list.

"Right whale upcalls are used extensively for passive acoustic monitoring in conservation efforts to protect this endangered species," said Parks.

Whales produce upcalls, sometimes called contact calls, when they are alone or in the process of joining with other whales. An upcall begins low and rises in pitch. It is the most frequent call produced by right whales.

Parks and her colleagues, Mark Johnson and Peter L. Tyack, Woods Hole Oceanographic Institution and Douglas Nowacek, Duke University, looked at short-term modifications of calling behavior of individual North Atlantic right whales in varying environmental noise situations. They report their results in today's (July 6) issue of Biology Letters.

The researchers' data came from right whales tagged with acoustic suction cup tags. They listened to tag recordings from seven male and seven female whales totaling 107 calls. The tags recorded from 2 to 18 calls each. The team looked at received level, duration and fundamental frequency of the calls, and they compared background noise levels with the call-received levels of the individual calls. Noise below 400 Hertz dominated the recorded background noise. These frequencies overlap with the frequencies of right whale upcalls. Much of the increase in background ocean noise in right whale habitat is believed to be due to commercial shipping.

It appears that right whales increase the amplitude, or the energy in their calls, directly as background noise levels increase without changing the frequency. This suggests that right whales can maintain the signal to noise ratio of their calls in moderate levels of ocean noise.

"To our knowledge, this is the first evidence for noise-dependent amplitude modification of calls produced by a baleen whale," said Parks.

Changing calling patterns can, however, incur costs including increased energy expenditure, alteration of the signal and the information it contains, and increased predatory risks. With increased noise the effective communication range for feeding or mating will shrink and stress levels on individual animals may rise.

"Whether they can maintain their communication range in noisier environments still needs to be tested," said Parks. "Ocean sound levels will probably continue to increase due to human activities and there is a physical limit to the maximum source level that an animal can produce."

Another implication for potential changes in whale calls is that upcalls are the whale calls that conservationists use to monitor right whale populations. They do this using automated acoustic sensors that are looking for specific parameters to tease out the whale calls from other noises.

The research team cautions that "Variability of call parameters also can reduce the effectiveness of detection algorithms and should be taken into account when calculating the probability of detection in different habitats."

The National Oceanic and Atmospheric Administration and the Office of Naval Research supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>