Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live virus implicates camels in MERS outbreak

29.04.2014

There is new, more definitive evidence implicating camels in the ongoing outbreak of Middle East Respiratory Syndrome, or MERS.

Scientists at the Center for Infection and Immunity at Columbia University's Mailman School of Public Health, King Saud University, and EcoHealth Alliance extracted a complete, live, infectious sample of MERS coronavirus from two camels in Saudi Arabia. The sample matched MERS coronavirus (MERS-CoV) found in humans, indicating that the virus in camels is capable of infecting humans and that camels are a likely source of the outbreak.

Results appear online in the journal mBio.

The researchers examined nasal samples collected during a countrywide survey of dromedary camels and selected samples from two animals with the highest viral load. They cultured and obtained complete genomic sequence from both animals as well as virus in nasal samples from several other camels.

The mathematical means of all genetic sequences (the consensus genomic sequences) were consistent with viruses found in human cases; however, samples from camels contained more than one virus genotype. Over a period of 48 hours of culture in primate cells, the genomic variation of viruses narrowed, mirroring the lower sequence diversity reported in MERS-CoV found in humans.

"The finding of infectious virus strengthens the argument that dromedary camels are reservoirs for MERS-CoV," says first author Thomas Briese, PhD, associate director of the Center for Infection and Immunity and associate professor of Epidemiology at the Mailman School. "The narrow range of MERS viruses in humans and a very broad range in camels may explain in part the why human disease is uncommon: because only a few genotypes are capable of cross species transmission," adds Dr. Briese.

"Given these new data, we are now investigating potential routes for human infection through exposure to camel milk or meat products," says co-author Abdulaziz N. Alagaili, PhD, director of the Mammals Research Chair at King Saud University. "This report builds on work published earlier this year when our team found that three-quarters of camels in Saudi Arabia carry MERS virus."

To date, at least 300 people have been infected with the virus that causes MERS and approximately 100 have died since the first documented case in Saudi Arabia in September 2012. Of these, more than 60—about one-fourth of the global total since MERS was identified—have been reported in the past month. Most cases have been in Saudi Arabia, with lower numbers in Jordan, Qatar, Tunisia, and the United Arab Emirates. France, Germany, Italy, and the United Kingdom, and more recently Malaysia and the Philippines, have also reported cases related to travel to the Middle East. While human-to-human transmission has occurred, the source of the disease in most cases has remained a mystery.

"Although there is no evidence that MERS-CoV is becoming more transmissible, the recent increase in reported cases is a cause for concern," says senior author W. Ian Lipkin, MD, director of the Center for Infection and Immunity and the John Snow Professor of Epidemiology at the Mailman School. "It is essential that investigators commit to data and sample sharing so that this potential threat to global health is addressed by the entire biomedical research community."

###

W. Ian Lipkin, MD, director of the Center for Infection and Immunity (CII) and the John Snow Professor of Epidemiology at the Mailman School, is the study's senior author. Additional co-authors include Nischay Mishra and Komal Jain at CII; Iyad S.Zalmout and Osama B. Mohammed at KSU Mammals Research Chair; Omar J. Jabado at the Icahn Medical Institute; and William B. Karesh and Peter Daszak at EcoHealth Alliance.

The KSU Mammals Research Chair is supported by the Deanship of Scientific Research, King Saud University. Work in the Center for Infection and Immunity and EcoHealth Alliance is supported by awards from the National Institutes of Health (AI057158) and the United States Agency for International Development's Emerging Pandemic Threat Program, PREDICT project, under terms of Cooperative Agreement Number GHN-A-OO-09-00010-00.

Timothy S. Paul | Eurek Alert!
Further information:
http://www.columbia.edu

Further reports about: EcoHealth Epidemiology Health Infection MERS MERS-CoV genomic humans outbreak viruses

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>