Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live virus implicates camels in MERS outbreak

29.04.2014

There is new, more definitive evidence implicating camels in the ongoing outbreak of Middle East Respiratory Syndrome, or MERS.

Scientists at the Center for Infection and Immunity at Columbia University's Mailman School of Public Health, King Saud University, and EcoHealth Alliance extracted a complete, live, infectious sample of MERS coronavirus from two camels in Saudi Arabia. The sample matched MERS coronavirus (MERS-CoV) found in humans, indicating that the virus in camels is capable of infecting humans and that camels are a likely source of the outbreak.

Results appear online in the journal mBio.

The researchers examined nasal samples collected during a countrywide survey of dromedary camels and selected samples from two animals with the highest viral load. They cultured and obtained complete genomic sequence from both animals as well as virus in nasal samples from several other camels.

The mathematical means of all genetic sequences (the consensus genomic sequences) were consistent with viruses found in human cases; however, samples from camels contained more than one virus genotype. Over a period of 48 hours of culture in primate cells, the genomic variation of viruses narrowed, mirroring the lower sequence diversity reported in MERS-CoV found in humans.

"The finding of infectious virus strengthens the argument that dromedary camels are reservoirs for MERS-CoV," says first author Thomas Briese, PhD, associate director of the Center for Infection and Immunity and associate professor of Epidemiology at the Mailman School. "The narrow range of MERS viruses in humans and a very broad range in camels may explain in part the why human disease is uncommon: because only a few genotypes are capable of cross species transmission," adds Dr. Briese.

"Given these new data, we are now investigating potential routes for human infection through exposure to camel milk or meat products," says co-author Abdulaziz N. Alagaili, PhD, director of the Mammals Research Chair at King Saud University. "This report builds on work published earlier this year when our team found that three-quarters of camels in Saudi Arabia carry MERS virus."

To date, at least 300 people have been infected with the virus that causes MERS and approximately 100 have died since the first documented case in Saudi Arabia in September 2012. Of these, more than 60—about one-fourth of the global total since MERS was identified—have been reported in the past month. Most cases have been in Saudi Arabia, with lower numbers in Jordan, Qatar, Tunisia, and the United Arab Emirates. France, Germany, Italy, and the United Kingdom, and more recently Malaysia and the Philippines, have also reported cases related to travel to the Middle East. While human-to-human transmission has occurred, the source of the disease in most cases has remained a mystery.

"Although there is no evidence that MERS-CoV is becoming more transmissible, the recent increase in reported cases is a cause for concern," says senior author W. Ian Lipkin, MD, director of the Center for Infection and Immunity and the John Snow Professor of Epidemiology at the Mailman School. "It is essential that investigators commit to data and sample sharing so that this potential threat to global health is addressed by the entire biomedical research community."

###

W. Ian Lipkin, MD, director of the Center for Infection and Immunity (CII) and the John Snow Professor of Epidemiology at the Mailman School, is the study's senior author. Additional co-authors include Nischay Mishra and Komal Jain at CII; Iyad S.Zalmout and Osama B. Mohammed at KSU Mammals Research Chair; Omar J. Jabado at the Icahn Medical Institute; and William B. Karesh and Peter Daszak at EcoHealth Alliance.

The KSU Mammals Research Chair is supported by the Deanship of Scientific Research, King Saud University. Work in the Center for Infection and Immunity and EcoHealth Alliance is supported by awards from the National Institutes of Health (AI057158) and the United States Agency for International Development's Emerging Pandemic Threat Program, PREDICT project, under terms of Cooperative Agreement Number GHN-A-OO-09-00010-00.

Timothy S. Paul | Eurek Alert!
Further information:
http://www.columbia.edu

Further reports about: EcoHealth Epidemiology Health Infection MERS MERS-CoV genomic humans outbreak viruses

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>