Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live and in Color

29.10.2012
Fluorescent pH-sensitive nanoparticles indicate bacterial growth

Rotting foods are a serious risk to our health. The food industry is therefore correspondingly strict in its vigilance toward bacteria in products. The influence of production and storage conditions on the growth of pathogens must constantly be evaluated.



In the journal Angewandte Chemie, researchers from Regensburg, Germany have now introduced a new method for monitoring the growth of bacteria: The fluorescence of nanoparticles embedded in an agarose growth medium changes significantly when the pH value changes because of bacterial metabolism. This can be monitored in real time with a simple digital camera.

Xu-dong Wang, Robert J. Meier, and Otto S. Wolfbeis from the University of Regensburg have developed a truly simple, broadly applicable process for the production of nanosensors for this purpose. A biocompatible polymer with water-friendly (hydrophilic) and water-repellent (hydrophobic) domains is added to water. If the concentration is right, the polymer forms stable micelles with relatively hydrophobic cores and a more hydrophilic outer layer.

The researchers embedded two different fluorescent dyes in these micelles. The first is a hydrophobic fluorescein dye that gives of green light when excited by an LED, and is sensitive to changes in the pH value. The second dye exhibits red fluorescence that is independent of the pH value and thus acts as an internal reference. These nanosensors are mixed into a combination of agarose and nutrients commonly used for bacterial cultures. This mixture is poured into Petri dishes, where it forms a gel.

In the initial state, the pH is set so that the green dye does not fluoresce; only the red fluorescence of the reference can be seen. When a sample containing bacteria is added, they begin to multiply. Their metabolism causes the pH value of the medium to rise. As the pH value increases, the nanoparticles give off more green light, while the red fluorescence remains unchanged. The radiation can easily be detected with the red and green channels of modern digital cameras.

The changes in the ratio of green to red fluorescence over time is recorded. This reflects the growth of the bacteria.

The nanoparticles are nontoxic and do not leave the agarose gel, so they are not taken up by the bacteria. They thus do not disrupt the growth of the bacteria, unlike some other sensors. The measurements are straightforward: Because it is only necessary to evaluate the ratio of the green fluorescence to the red reference, fluctuations in detection have no effect. By using conventional Petri dishes instead of small-format microtiter plates and imaging procedures instead of pH electrodes, it is also possible to resolve the spatial distribution of bacterial growth.

In the future, these new sensors could be integrated into food packaging along with a barcode to indicate the freshness of the food.

About the Author
Otto S. Wolfbeis is Director of the Institute for Analytical Chemistry, Chemo- and Biosensors at the University of Regensburg. His research is concentrated in the area of optical sensors for fundamental indicators such as pH value, oxygen, and glucose.

Author: Otto S. Wolfbeis, University of Regensburg (Germany), http://www.wolfbeis.de

Title: Fluorescent pH-Sensitive Nanoparticles in an Agarose Matrix for Imaging of Bacterial Growth and Metabolism

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201205715

Otto S. Wolfbeis | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.

Further reports about: 3-D Petri dish Angewandte Chemie Color test digital camera

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>