Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Live and in Color

29.10.2012
Fluorescent pH-sensitive nanoparticles indicate bacterial growth

Rotting foods are a serious risk to our health. The food industry is therefore correspondingly strict in its vigilance toward bacteria in products. The influence of production and storage conditions on the growth of pathogens must constantly be evaluated.



In the journal Angewandte Chemie, researchers from Regensburg, Germany have now introduced a new method for monitoring the growth of bacteria: The fluorescence of nanoparticles embedded in an agarose growth medium changes significantly when the pH value changes because of bacterial metabolism. This can be monitored in real time with a simple digital camera.

Xu-dong Wang, Robert J. Meier, and Otto S. Wolfbeis from the University of Regensburg have developed a truly simple, broadly applicable process for the production of nanosensors for this purpose. A biocompatible polymer with water-friendly (hydrophilic) and water-repellent (hydrophobic) domains is added to water. If the concentration is right, the polymer forms stable micelles with relatively hydrophobic cores and a more hydrophilic outer layer.

The researchers embedded two different fluorescent dyes in these micelles. The first is a hydrophobic fluorescein dye that gives of green light when excited by an LED, and is sensitive to changes in the pH value. The second dye exhibits red fluorescence that is independent of the pH value and thus acts as an internal reference. These nanosensors are mixed into a combination of agarose and nutrients commonly used for bacterial cultures. This mixture is poured into Petri dishes, where it forms a gel.

In the initial state, the pH is set so that the green dye does not fluoresce; only the red fluorescence of the reference can be seen. When a sample containing bacteria is added, they begin to multiply. Their metabolism causes the pH value of the medium to rise. As the pH value increases, the nanoparticles give off more green light, while the red fluorescence remains unchanged. The radiation can easily be detected with the red and green channels of modern digital cameras.

The changes in the ratio of green to red fluorescence over time is recorded. This reflects the growth of the bacteria.

The nanoparticles are nontoxic and do not leave the agarose gel, so they are not taken up by the bacteria. They thus do not disrupt the growth of the bacteria, unlike some other sensors. The measurements are straightforward: Because it is only necessary to evaluate the ratio of the green fluorescence to the red reference, fluctuations in detection have no effect. By using conventional Petri dishes instead of small-format microtiter plates and imaging procedures instead of pH electrodes, it is also possible to resolve the spatial distribution of bacterial growth.

In the future, these new sensors could be integrated into food packaging along with a barcode to indicate the freshness of the food.

About the Author
Otto S. Wolfbeis is Director of the Institute for Analytical Chemistry, Chemo- and Biosensors at the University of Regensburg. His research is concentrated in the area of optical sensors for fundamental indicators such as pH value, oxygen, and glucose.

Author: Otto S. Wolfbeis, University of Regensburg (Germany), http://www.wolfbeis.de

Title: Fluorescent pH-Sensitive Nanoparticles in an Agarose Matrix for Imaging of Bacterial Growth and Metabolism

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201205715

Otto S. Wolfbeis | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.

Further reports about: 3-D Petri dish Angewandte Chemie Color test digital camera

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>