Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lipid involved with gene regulation uncovered

Findings may lead to development of drugs to fight cancer

Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood – a finding that could lead to a new generation of drugs to fight cancer and inflammatory disease.

In the Sept. 4 issue of the journal Science, a team led by Sarah Spiegel, Ph.D., professor and chair in the VCU Department of Biochemistry and Molecular Biology and co-leader of the VCU Massey Cancer Center's cancer cell biology program, reported that the cell nucleus, which contains the DNA that codes for all of our genes, also contains and produces S1P that is important for the regulation of certain genes. Researchers have known that the nucleus contains several kinds of lipids, but their functions have remained unknown until now. The team identified the mechanisms by which cancer cells produce S1P in the nucleus and uncovered its new function there to regulate gene expression.

Spiegel, who is internationally recognized for her pioneering work on new lipid mediators that regulate cell growth and cell death, and her colleagues first discovered the role of S1P in cell growth regulation nearly a decade ago.

In this study, the team demonstrated that S1P, produced by type 2 sphingosine kinase in the nucleus, regulates genes by acting like a widely used type of cancer chemotherapeutic drug known as histone deacetylase inhibitors. Histone deacetylases are a family of enzymes that regulate expression of numerous genes that code for proteins involved in cancer and many other human diseases. Although several types of histone deacetylase inhibitors are now in clinical trials, the physiological regulators of these important enzymes were not known.

"Our work shows that S1P is a physiologically important regulator of histone deacetylases," said lead author Spiegel.

"We believe that our studies will help in the development of a new class of histone deacetylase inhibitors that might be useful for treatment of cancer and inflammatory diseases," she said.

According to Spiegel, previous investigations have shown that increased levels of type 1 sphingosine kinase, one of the two enzymes that produce S1P inside cells, but not in their nucleus, correlates with poor outcome in many types of human cancers. Spiegel and her team have previously developed a specific inhibitor of this type 1 sphingosine kinase and showed that it was effective in mice against growth of human leukemia and brain cancer tumors.

This work was supported by a grant from the National Institutes of Health.

Spiegel collaborated with VCU researchers Nitai C. Hait, Ph.D., Jeremy Allegood, Ph.D., Michael Maceyka, Ph.D., Graham M. Strub, Ph.D., Kuzhuvelil B. Harikumar, Ph.D., Sandeep K. Singh, Ph.D., and Tomasz Kordula, Ph.D. Also contributing to this work were Cheng Luo, Ph.D., from the University of Pennsylvania and Chinese Academy of Sciences; Ronen Marmorstein, Ph.D., with the University of Pennsylvania; and Sheldon Milstien, Ph.D., a neuroscientist with the National Institute of Mental Health.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see

Sathya Achia Abraham | EurekAlert!
Further information:

Further reports about: Health Lipid droplets Medical Wellness S1P VCU cell growth inflammatory disease

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>