Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipid involved with gene regulation uncovered

08.09.2009
Findings may lead to development of drugs to fight cancer

Virginia Commonwealth University School of Medicine researchers have discovered a new role for the bioactive lipid messenger, sphingosine-1-phosphate, or S1P, that is abundant in our blood – a finding that could lead to a new generation of drugs to fight cancer and inflammatory disease.

In the Sept. 4 issue of the journal Science, a team led by Sarah Spiegel, Ph.D., professor and chair in the VCU Department of Biochemistry and Molecular Biology and co-leader of the VCU Massey Cancer Center's cancer cell biology program, reported that the cell nucleus, which contains the DNA that codes for all of our genes, also contains and produces S1P that is important for the regulation of certain genes. Researchers have known that the nucleus contains several kinds of lipids, but their functions have remained unknown until now. The team identified the mechanisms by which cancer cells produce S1P in the nucleus and uncovered its new function there to regulate gene expression.

Spiegel, who is internationally recognized for her pioneering work on new lipid mediators that regulate cell growth and cell death, and her colleagues first discovered the role of S1P in cell growth regulation nearly a decade ago.

In this study, the team demonstrated that S1P, produced by type 2 sphingosine kinase in the nucleus, regulates genes by acting like a widely used type of cancer chemotherapeutic drug known as histone deacetylase inhibitors. Histone deacetylases are a family of enzymes that regulate expression of numerous genes that code for proteins involved in cancer and many other human diseases. Although several types of histone deacetylase inhibitors are now in clinical trials, the physiological regulators of these important enzymes were not known.

"Our work shows that S1P is a physiologically important regulator of histone deacetylases," said lead author Spiegel.

"We believe that our studies will help in the development of a new class of histone deacetylase inhibitors that might be useful for treatment of cancer and inflammatory diseases," she said.

According to Spiegel, previous investigations have shown that increased levels of type 1 sphingosine kinase, one of the two enzymes that produce S1P inside cells, but not in their nucleus, correlates with poor outcome in many types of human cancers. Spiegel and her team have previously developed a specific inhibitor of this type 1 sphingosine kinase and showed that it was effective in mice against growth of human leukemia and brain cancer tumors.

This work was supported by a grant from the National Institutes of Health.

Spiegel collaborated with VCU researchers Nitai C. Hait, Ph.D., Jeremy Allegood, Ph.D., Michael Maceyka, Ph.D., Graham M. Strub, Ph.D., Kuzhuvelil B. Harikumar, Ph.D., Sandeep K. Singh, Ph.D., and Tomasz Kordula, Ph.D. Also contributing to this work were Cheng Luo, Ph.D., from the University of Pennsylvania and Chinese Academy of Sciences; Ronen Marmorstein, Ph.D., with the University of Pennsylvania; and Sheldon Milstien, Ph.D., a neuroscientist with the National Institute of Mental Health.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Health Lipid droplets Medical Wellness S1P VCU cell growth inflammatory disease

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>