Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Link between Blood Flow and Dementia

02.08.2011
Dr. Gabor Petzold begins work as Research Group Leader at the DZNE and Senior Physician at the University Hospital of Bonn

High blood pressure is a typical risk factor for dementia. Why is that? What is the relationship between blood flow and dementia? These are the questions that Dr. Gabor Petzold is investigating at the German Center for Neurodegenerative Diseases (DZNE) in Bonn. He is also Senior Physician at the Clinic for Neurology, where he is responsible for the outpatient clinic for vascular diseases.

Each brain activity consumes oxygen, which is carried by the blood to the brain. The blood flow is carefully regulated: When activity increases in a brain region there is a corresponding increase in blood flow in the same region. Impaired regulation of blood flow may lead to vascular dementia – a disease mainly characterized by slowing of mental activity. A relationship between cerebral blood flow and disease can be observed in other dementias as well. Petzold will examine these correlations in vascular dementia, in CADASIL (a congenital vascular disease), in symptoms of dementia following stroke, and in Alzheimer’s disease.

Petzold’s work has already provided some new insights into the cellular and molecular bases of the neural regulation of blood flow. For instance, he has shown the importance of astrocytes in the regulation mechanism. Astrocytes are cells that enclose blood vessels and are in contact with synapses, whose signals they transmit to the blood vessels. In Alzheimer’s patients, the signaling pathway regulating blood flow may be impaired. Although the cause of Alzheimer’s disease is considered to be abnormal protein deposition in the brain, impaired blood flow is assumed to accelerate the progress of the disease. Investigations have revealed that impaired cerebral blood flow occurs early on, before the symptoms of the disease appear. Timely intervention could hence delay the progress of the disease.

The exact molecular causes of vascular dementia or symptoms of dementia following a stroke are still unknown. Using highly sophisticated imaging technologies, which allow the observation of cells in vivo, Petzold and his research team plan to examine these diseases more closely with adequate models, thus hoping to obtain clues to potential new treatments. Another aim of the group is to develop new clinical therapies and diagnostics based on their research findings.

Petzold completed his specialization in neurology at the Charité University Hospital in Berlin. From 2005 to 2008 he conducted research at Harvard University; afterward he returned to the Charité, where he worked mainly as a physician. In Bonn, Petzold will divide his time between the lab and the clinic, and in this double capacity build a bridge between research and patient care.

Contact information:
Dr. Gabor Petzold
German Center for Neurodegenerative Diseases (DZNE)
Biomedizinisches Zentrum (BMZ), UKB
Sigmund-Freud-Str. 25
53127 Bonn
Phone: +49 (0) 228 287 51606
Email: gabor.petzold@dzne.de
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- und Public Relations
Holbeinstraße 13-15
53175 Bonn
Phone: +49 (0) 228 43302 263
Mobile: +49 (0) 173 - 5471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de/

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>