Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Link between Blood Flow and Dementia

02.08.2011
Dr. Gabor Petzold begins work as Research Group Leader at the DZNE and Senior Physician at the University Hospital of Bonn

High blood pressure is a typical risk factor for dementia. Why is that? What is the relationship between blood flow and dementia? These are the questions that Dr. Gabor Petzold is investigating at the German Center for Neurodegenerative Diseases (DZNE) in Bonn. He is also Senior Physician at the Clinic for Neurology, where he is responsible for the outpatient clinic for vascular diseases.

Each brain activity consumes oxygen, which is carried by the blood to the brain. The blood flow is carefully regulated: When activity increases in a brain region there is a corresponding increase in blood flow in the same region. Impaired regulation of blood flow may lead to vascular dementia – a disease mainly characterized by slowing of mental activity. A relationship between cerebral blood flow and disease can be observed in other dementias as well. Petzold will examine these correlations in vascular dementia, in CADASIL (a congenital vascular disease), in symptoms of dementia following stroke, and in Alzheimer’s disease.

Petzold’s work has already provided some new insights into the cellular and molecular bases of the neural regulation of blood flow. For instance, he has shown the importance of astrocytes in the regulation mechanism. Astrocytes are cells that enclose blood vessels and are in contact with synapses, whose signals they transmit to the blood vessels. In Alzheimer’s patients, the signaling pathway regulating blood flow may be impaired. Although the cause of Alzheimer’s disease is considered to be abnormal protein deposition in the brain, impaired blood flow is assumed to accelerate the progress of the disease. Investigations have revealed that impaired cerebral blood flow occurs early on, before the symptoms of the disease appear. Timely intervention could hence delay the progress of the disease.

The exact molecular causes of vascular dementia or symptoms of dementia following a stroke are still unknown. Using highly sophisticated imaging technologies, which allow the observation of cells in vivo, Petzold and his research team plan to examine these diseases more closely with adequate models, thus hoping to obtain clues to potential new treatments. Another aim of the group is to develop new clinical therapies and diagnostics based on their research findings.

Petzold completed his specialization in neurology at the Charité University Hospital in Berlin. From 2005 to 2008 he conducted research at Harvard University; afterward he returned to the Charité, where he worked mainly as a physician. In Bonn, Petzold will divide his time between the lab and the clinic, and in this double capacity build a bridge between research and patient care.

Contact information:
Dr. Gabor Petzold
German Center for Neurodegenerative Diseases (DZNE)
Biomedizinisches Zentrum (BMZ), UKB
Sigmund-Freud-Str. 25
53127 Bonn
Phone: +49 (0) 228 287 51606
Email: gabor.petzold@dzne.de
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- und Public Relations
Holbeinstraße 13-15
53175 Bonn
Phone: +49 (0) 228 43302 263
Mobile: +49 (0) 173 - 5471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>